首页> 外文期刊>Signal Processing Magazine, IEEE >Effective Feature Extraction and Data Reduction in Remote Sensing Using Hyperspectral Imaging [Applications Corner]
【24h】

Effective Feature Extraction and Data Reduction in Remote Sensing Using Hyperspectral Imaging [Applications Corner]

机译:使用高光谱成像进行遥感中有效的特征提取和数据缩减[应用角落]

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

With numerous and contiguous spectral bands acquired from visible light (400?1,000 nm) to (near) infrared (1,000?1,700 nm and over), hyperspectral imaging (HSI) can potentially identify different objects by detecting minor changes in temperature, moisture, and chemical content. As a result, HSI has been widely applied in a number of application areas, including remote sensing [1]. HSI data contains two-dimensional (2-D) spatial and one-dimensional spectral information, and naturally forms a three-dimensional (3-D) hypercube with a high spectral resolution in nanometers that enables robust discrimination of ground features. However, new challenges arise in dealing with extremely large data sets. For a hypercube with relatively small spatial dimension of 600 ? 400 pixels at 16 bits-per-band-per-pixel, the data volume becomes 120 MB for 250 spectral bands. In some cases, this large data volume can be linearly increased when multiple hypercubes are acquired across time to monitor system dynamics in consecutive time instants. When the ratio between the feature dimension (spectral bands) and the number of data samples (in vector-based pixels) is vastly different, high-dimensional data suffers from the well-known curse of dimensionality. For feature extraction and dimensionality reduction, principal components analysis (PCA) is widely used in HSI [2], where the number of extracted components is significantly reduced compared to the original feature dimension, i.e., the number of spectral bands. For effective analysis of large-scale data in HSI, conventional PCA faces three main challenges:
机译:高光谱成像(HSI)具有从可见光(400-1,000 nm)到(近)红外(1,000-1,700 nm及以上)的大量连续光谱带,可以通过检测温度,湿度和湿度的微小变化来识别不同的物体。化学含量。结果,HSI已广泛应用于包括遥感在内的许多应用领域[1]。 HSI数据包含二维(2-D)空间和一维光谱信息,并自然形成具有纳米级高光谱分辨率的三维(3-D)超立方体,从而能够可靠地识别地面特征。但是,在处理超大型数据集时出现了新的挑战。对于空间尺寸较小的超立方体600? 400个像素(每像素每带16位)时,对于250个光谱带,数据量变为120 MB。在某些情况下,当跨时间获取多个超多维数据集以连续连续地监视系统动态时,可以线性增加此大数据量。当特征尺寸(光谱带)与数据样本数量(基于矢量像素)之间的比率差异很大时,高维数据会遭受众所周知的维数诅咒。对于特征提取和降维,主成分分析(PCA)在HSI [2]中被广泛使用,与原始特征维相比,提取的成分数量明显减少,即光谱带的数量。为了有效分析HSI中的大规模数据,常规PCA面临三个主要挑战:

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号