首页> 外文期刊>IEEE Network >Structured Bayesian Compression for Deep Models in Mobile-Enabled Devices for Connected Healthcare
【24h】

Structured Bayesian Compression for Deep Models in Mobile-Enabled Devices for Connected Healthcare

机译:用于连接医疗保健的移动设备的深层模型的结构化贝叶斯压缩

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Deep models, typically deep neural networks, have millions of parameters, analyze medical data accurately, yet in a time-consuming method. However, energy cost effectiveness and computational efficiency are important for prerequisites developing and deploying mobile-enabled devices, the mainstream trend in connected healthcare. Therefore, deep models’ compression has become a problem of great significance for real-time health services. In this article, we first emphasize the use of Bayesian learning for model sparsity, effectively reducing the number of parameters while maintaining model performance. Specifically, with sparsity inducing priors, large parts of the network can be pruned with a simple retraining of arbitrary datasets. Then, we propose a novel structured Bayesian compression architecture by adaptively learning both group sparse and block sparse while also designing sparse-oriented mixture priors to improve the expandability of the compression model. Experimental results from both simulated datasets (MNIST) as well as practical medical datasets (Histopathologic Cancer) demonstrate the effectiveness and good performance of our framework on deep model compression.
机译:深度模型,通常是深度神经网络,具有数百万个参数,准确分析医疗数据,但在耗时的方法中。然而,能源成本效率和计算效率对于先决条件开发和部署移动设备的设备来说是重要的,主流趋势在连接的医疗保健中。因此,深层模型的压缩已经成为实时保健服务具有重要意义的问题。在本文中,我们首先强调了贝叶斯学习的模型稀疏,有效地减少了参数的数量,同时保持模型性能。具体地,对于稀疏性诱导前沿,可以用简单的任意数据集进行简单再培训来修剪网络的大部分。然后,我们通过自适应地学习两组稀疏和块稀疏的方式提出了一种新颖的结构化贝叶斯压缩架构,同时也设计了稀疏定向的混合前沿以提高压缩模型的可扩张性。模拟数据集(MNIST)以及实际医疗数据集(组织病理学癌症)的实验结果证明了我们对深层模型压缩框架的有效性和良好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号