...
首页> 外文期刊>IEEE journal of selected topics in quantum electronics >Lateral Ordering, Position, and Number Control of Self-Organized Quantum Dots: The Key to Future Functional Nanophotonic Devices
【24h】

Lateral Ordering, Position, and Number Control of Self-Organized Quantum Dots: The Key to Future Functional Nanophotonic Devices

机译:自组织量子点的横向排序,位置和数量控制:未来功能纳米光子器件的关键

获取原文
获取原文并翻译 | 示例

摘要

Lateral ordering, position, and number control of self-organized epitaxial semiconductor quantum dots (QDs) are demonstrated. Straight linear InAs QD arrays are formed by self-organized anisotropic strain engineering of an InGaAsP/InP (1 0 0) superlattice template in chemical beam epitaxy. The QD emission wavelength at room temperature is tuned into the important 1.55 $mu$m telecom wavelength region through the insertion of ultrathin GaAs interlayers. Guided self-organized anisotropic strain engineering is demonstrated on shallow- and deep-patterned GaAs (3 1 1)B substrates by molecular beam epitaxy for the formation of complex InGaAs QD arrays. Lateral positioning and number control of InAs QDs, down to a single QD, are demonstrated on truncated InP (1 0 0) pyramids by selective-area metal–organic vapor phase epitaxy. Sharp emission around 1.55 $mu$m is observed well above liquid nitrogen temperatures. The regrowth of a passive waveguide structure establishes submicrometer-scale active–passive integration. The demonstrated control over QD formation is the key to future functional nanophotonic devices and paves the way toward the ultimates of photonic-integrated circuits operating at the single and multiple electron and photon level with control of the quantum mechanical and electromagnetic interactions.
机译:说明了自组织外延半导体量子点(QD)的横向排序,位置和数量控制。直线线性InAs QD阵列是通过化学束外延中InGaAsP / InP(1 0 0)超晶格模板的自组织各向异性应变工程形成的。通过插入超薄GaAs中间层,可以将室温下的QD发射波长调整到重要的1.55μm电信波长范围。通过分子束外延在浅图案和深图案的GaAs(3 1 1)B衬底上证明了自组织各向异性应变工程的指导,以形成复杂的InGaAs QD阵列。通过选择区域金属-有机气相外延在截短的InP(1 0 0)金字塔上展示了InAs QD的横向定位和数量控制,直至单个QD。观察到远高于液氮温度的约1.55μm的急剧排放。无源波导结构的再生长建立了亚微米级的有源-无源集成。证明的对QD形成的控制是未来功能纳米光子器件的关键,并通过控制量子力学和电磁相互作用,为最终在单电子和多电子和光子级工作的光子集成电路的最终发展铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号