...
首页> 外文期刊>IEEE journal of selected topics in quantum electronics >Power Scaling on Efficient Generation of Ultrafast Terahertz Pulses
【24h】

Power Scaling on Efficient Generation of Ultrafast Terahertz Pulses

机译:有效生成超快太赫兹脉冲的功率定标

获取原文
获取原文并翻译 | 示例
           

摘要

We have investigated power scaling for the efficient generation of the broadband terahertz (THz) pulses. These THz short pulses are converted from ultrafast laser pulses propagating in a class of semiconductor electrooptic materials. By measuring the dependence of the THz output on the pump beam in terms of incident angle, polarization, azimuthal angle, and pump intensity, we have precisely determined the contributions made by optical rectification, drift of carriers under a surface or external field, and photo-Dember effect. When a second-order nonlinear material is pumped below its bandgap, optical rectification is always the mechanism for the THz generation. Above the bandgap, however, the three mechanisms mentioned earlier often compete with one another, depending on the material characteristics and pump intensity. At a sufficiently high pump intensity, optical rectification usually becomes the dominant mechanism for a second-order nonlinear material. Our analysis indicates that second-order nonlinear coefficients can be resonantly enhanced when a material is pumped above its bandgap. In such a case, the THz output power and normalized conversion efficiency can be dramatically increased. We have also analyzed how the THz generation is affected by some competing processes such as two-photon absorption.
机译:我们已经研究了功率缩放以有效产生宽带太赫兹(THz)脉冲。这些THz短脉冲是从在半导体电光材料中传播的超快激光脉冲转换而来的。通过测量THz输出对泵浦光束的入射角,偏振,方位角和泵浦强度的依赖性,我们精确地确定了由光学整流,载流子在表面或外场下的漂移以及光敏化所做出的贡献。 -琥珀效果。当将二阶非线性材料泵送到其带隙以下时,光学整流始终是产生THz的机制。但是,在带隙之上,取决于材料特性和泵浦强度,前面提到的三种机制经常相互竞争。在足够高的泵浦强度下,光学整流通常成为二阶非线性材料的主要机理。我们的分析表明,当一种材料被泵浦到其带隙之上时,二阶非线性系数可以共振地增强。在这种情况下,可以显着提高THz输出功率和归一化转换效率。我们还分析了某些竞争过程(例如双光子吸收)如何影响太赫兹的产生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号