首页> 外文期刊>Selected Areas in Communications, IEEE Journal on >Design and Experimental Validation of a GMPLS/PCE Control Plane for Elastic CO-OFDM Optical Networks
【24h】

Design and Experimental Validation of a GMPLS/PCE Control Plane for Elastic CO-OFDM Optical Networks

机译:弹性CO-OFDM光网络的GMPLS / PCE控制平面的设计和实验验证

获取原文
获取原文并翻译 | 示例
           

摘要

ITU-T Recommendation G.694.1 defines normative DWDM frequency grids, each being a reference set of values that correspond to allowed nominal central frequencies, obtained using a fixed channel spacing (e.g., 12.5 GHz, 25 GHz, 50 GHz or 100 GHz). This rigid, grid-based approach does not seem well adapted for data rates beyond 100 Gb/s, is particularly inefficient when a whole wavelength is assigned to a lower rate optical path, and is not flexible enough for multi-rate systems . Consequently, the next generation of optical networks will require a flexible, highly efficient and adaptive management of the optical spectrum, along with advanced optical modulation schemes that efficiently use allocated spectrum slots, and recent progress on optical network technology justifies research on both new optical transmission systems as well as the applicability of control and management frameworks to such networks. We design and deploy a GMPLS control plane for flexible optical networks with coherent optical orthogonal frequency-division multiplexing (O-OFDM) transmission; we detail its functional architecture, which combines a centralized entity that performs path routing and modulation assignment, with a distributed spectrum allocation. The centralized entity (i.e., a path computation element) uses pre-configured static path characterizations, based on exhaustive OFDM transmission simulations, when performing dynamic path computation in line with GMPLS constrained shortest path mechanisms. The distributed spectrum allocation assigns frequency ranges (slots) to connection requests, by using dynamic signaling procedures and applying slot assignment policies. We summarize the control plane protocol extensions involved in the main functional aspects: routing and topology dissemination, path computation, signaling and resource reservation. We experimentally validate and evaluate the integrated centralized PCE and GMPLS control plane in a control plane testbed, obtaining key perfor- ance indicators such as path setup latency and blocking probability for different frequency slot assignment policies.
机译:ITU-T G.694.1建议书定义了规范DWDM频率网格,每个频率网格都是一组参考值,对应于使用固定信道间隔(例如12.5 GHz,25 GHz,50 GHz或100 GHz)获得的允许的标称中心频率。这种严格的,基于网格的方法似乎不适用于超过100 Gb / s的数据速率,当将整个波长分配给较低速率的光路时效率特别低,并且对于多速率系统而言不够灵活。因此,下一代光网络将需要灵活,高效和自适应的频谱管理,以及有效利用分配的频谱时隙的先进光调制方案,并且光网络技术的最新进展证明了对两种新型光传输的研究都是合理的系统以及控制和管理框架对此类网络的适用性。我们为具有相干光正交频分复用(O-OFDM)传输的柔性光网络设计并部署了GMPLS控制平面;我们将详细介绍其功能架构,该架构将执行路径路由和调制分配的集中式实体与分布式频谱分配结合在一起。当根据GMPLS约束的最短路径机制执行动态路径计算时,集中式实体(即路径计算元素)将基于详尽的OFDM传输仿真使用预先配置的静态路径特征。分布式频谱分配通过使用动态信令过程并应用时隙分配策略,将频率范围(时隙)分配给连接请求。我们总结了主要功能方面涉及的控制平面协议扩展:路由和拓扑分发,路径计算,信令和资源预留。我们在控制平面测试平台上通过实验验证和评估集成的集中式PCE和GMPLS控制平面,获得关键性能指标,例如路径设置等待时间和针对不同频率时隙分配策略的阻塞概率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号