首页> 外文期刊>IEEE Journal of Quantum Electronics >Modeling Passive Mode-Locking via Saturable Absorption in Graphene Using the Finite-Difference Time-Domain Method
【24h】

Modeling Passive Mode-Locking via Saturable Absorption in Graphene Using the Finite-Difference Time-Domain Method

机译:使用有限差分时域方法通过石墨烯中的饱和吸收来建模被动锁模

获取原文
获取原文并翻译 | 示例
       

摘要

Graphene's electromagnetic properties have been broadly studied; however, incorporating those properties into electromagnetic simulation tools continues to be investigated. In the present submission, we should how graphene's nonlinear response can be incorporated into the finite-difference time-domain method. Specifically, we focus on graphene's saturable absorption. Saturable absorbers are those whose absorption decreases as the input intensity is increased. Generally this is associated with a reduction of carriers in the valence band (and a reduction of states in the conduction band) due to absorption of intense illumination. In this work we use a carrier rate equation to model the nonlinear dynamics of both the graphene and the gain regions. We show how experimentally measured values of graphene's nominal and saturable absorption can be incorporated into the carrier rate equation approach.An approach for modeling the dynamic saturable absorption of graphene using the finite-difference time-domain method is presented. In particular, this paper focuses on sub-picosecond pulse formation in a passively mode-locked semiconductor laser. The dynamics and the saturability of the gain and absorption are described by a carrier rate equation. The carrier dynamics are coupled to the electromagnetic field through an effective current density. All parameters of the graphene dynamics are obtained from reported experimental measurements. Using this numerical method, the dependence of output intensity and pulse width on input current density, graphene location, and cavity size is investigated. We find that pulse widths in the range 100–200 fs can be reliably generated with peak output intensities of around 0.15 mW/ . The optimal placement of the graphene layer in the cavity is strongly dependent on the standing wave pattern near the mirror. We found that cavities as small as 30 still support stable pulse formation.
机译:石墨烯的电磁性能已得到广泛研究。然而,将这些特性纳入电磁仿真工具的工作仍在继续进行。在本文中,我们应该如何将石墨烯的非线性响应纳入有限差分时域方法。具体来说,我们专注于石墨烯的饱和吸收。饱和吸收剂是吸收强度随输入强度增加而降低的吸收剂。通常,这与由于强光照的吸收导致价带中载流子的减少(以及导带中态的减少)有关。在这项工作中,我们使用载流子速率方程来对石墨烯和增益区域的非线性动力学建模。我们展示了如何将石墨烯的标称吸收率和饱和吸收率的实验测量值结合到载流子速率方程方法中。提出了一种使用时域有限差分法模拟石墨烯的动态饱和吸收率的方法。特别是,本文重点讨论了被动锁模半导体激光器中的亚皮秒脉冲形成。增益和吸收的动态性和饱和性由载波速率方程式描述。载流子动力学通过有效电流密度耦合到电磁场。石墨烯动力学的所有参数均从报告的实验测量中获得。使用这种数值方法,研究了输出强度和脉冲宽度对输入电流密度,石墨烯位置和腔尺寸的依赖性。我们发现,可以以大约0.15 mW /的峰值输出强度可靠地产生100–200 fs范围内的脉冲宽度。石墨烯层在腔中的最佳放置在很大程度上取决于反射镜附近的驻波图。我们发现,小至30的腔仍然支持稳定的脉冲形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号