...
【24h】

Spintronics device concepts

机译:Spintronics设备概念

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Spin-dependent phenomena in semiconductors may lead to devices with new or enhanced functionality, such as polarised solid-state light sources (spin light-emitting diodes), novel microprocessors and sensitive biological and chemical sensors. The realisation of robust semiconductor spin-device technology requires the ability to control the injection, transport and detection of polarised carriers, and to manipulate their density by a field gating. The absence of Si-based or room-temperature dilute magnetic semiconductors has subdued the initial excitement over semiconductor spintronics, but recent reports demonstrate that progress is far from dormant. The authors give examples of a number of different spin-device concepts for polarised light emission, spin field-effect transistors) and nanowire sensors. It is important to re-examine some of the earlier concepts for spintronics devices, such as the spin field-effect transistor, to account for the presence of the strong magnetic field which has deleterious effects. In some of these cases, the spin device appears to have no advantage relative to the conventional charge-control electronic analogue. There have been demonstrations of device-type operation in structures based on GaMnAs and InMnAs at low temperatures. The most promising materials for room-temperature polarised light emission are thought to be GaN and ZnO, but results to date on realising such devices have been disappointing. The short spin-relaxation time observed in GaN/InGaN heterostructures probably results from the Rashba effect. Possible solutions involve either cubic phase nitrides or the use of additional stressor layers to create a larger spin-splitting, to get polarised light emission from these structures, or to look at alternative semiconductors and fresh device approaches.
机译:半导体中与自旋有关的现象可能导致具有新功能或增强功能的设备,例如偏振固态光源(自旋发光二极管),新型微处理器以及敏感的生物和化学传感器。强大的半导体自旋器件技术的实现要求能够控制极化载流子的注入,传输和检测,并通过场门控来控制其密度。缺乏基于硅或室温的稀磁半导体,已经使半导体自旋电子学的最初兴旺发展得到了缓和,但是最近的报道表明,进展远非止步不前。作者给出了用于偏振光发射,自旋场效应晶体管和纳米线传感器的许多不同自旋器件概念的示例。重新检查自旋电子器件的某些较早的概念(例如自旋场效应晶体管),以解决存在有害作用的强磁场的存在,这一点很重要。在这些情况中的某些情况下,自旋装置相对于常规的电荷控制电子类似物似乎没有优势。已经证明了在低温下基于GaMnAs和InMnAs的结构中的器件类型操作。室温偏振光发射最有前途的材料被认为是GaN和ZnO,但是迄今为止实现这种器件的结果令人失望。在GaN / InGaN异质结构中观察到的很短的自旋弛豫时间可能是由R​​ashba效应引起的。可能的解决方案包括立方相氮化物或使用其他应力源层以产生更大的自旋分裂,从这些结构中获得偏振光发射,或研究替代性半导体和新的器件方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号