...
首页> 外文期刊>IBM Journal of Research and Development >Interfacing molecular dynamics with continuum dynamics in computer simulation: Toward an application to biological membranes
【24h】

Interfacing molecular dynamics with continuum dynamics in computer simulation: Toward an application to biological membranes

机译:在计算机仿真中将分子动力学与连续动力学接口:应用于生物膜

获取原文
   

获取外文期刊封面封底 >>

       

摘要

A clear challenge in the field of computer simulation of biological systems is to develop a simulation methodology that incorporates the vast temporal and spatial scales observed in living systems. At present, simulation capabilities generally operate in either microscopic or macroscopic regimes. Microscopic molecular dynamics simulations can examine systems up to the order of 100000 atoms on time scales of the order of nanoseconds. This is still orders of magnitude below the scales required to model complete biological structures such as a living cell. Continuum-based simulations, frequently employed in mechanical engineering problems, can model complete biological assemblies but do not contain any explicit molecular information. To fully capture the intricate interplay between microscopic processes and macroscopic events, a method of “information transfer” between these two disparate time and length scales is required. We present a new simulation methodology based on fundamental aspecs of stat istical and continuum mechanics that allows microscopic fluctuations to propagate to macroscopic scales and vice versa. A feedback mechanism is developed in which microscopic-level molecular dynamics simulations are coupled to corresponding macro-scale continuum-level simulations. The techniques of non-equilibrium molecular dynamics are used to create the micro-to-macro interface, where transport coefficients that are required input at the continuum level are calculated from detailed microscopic models. We present results for a model membrane in which the material is modeled at both spatial and temporal levels. The effect of non-elastic perturbations at the molecular level on macroscopic material properties is examined as a demonstration of the viability of the technique.
机译:在生物系统的计算机模拟领域中,一个明显的挑战是开发一种模拟方法,该方法应结合在生命系统中观察到的巨大的时空尺度。目前,仿真功能通常在微观或宏观体制下运作。微观分子动力学模拟可以在纳秒级的时间尺度上检查多达100000个原子的系统。这仍然比为完整的生物结构(例如活细胞)建模所需的规模低几个数量级。在机械工程问题中经常使用的基于连续体的模拟可以对完整的生物装配进行建模,但不包含任何明确的分子信息。为了完全捕获微观过程和宏观事件之间的复杂相互作用,需要在这两个不同的时间尺度和长度尺度之间进行“信息传递”的方法。我们提供了一种基于统计和连续力学基本原理的新模拟方法,该方法允许微观波动传播到宏观尺度,反之亦然。开发了一种反馈机制,其中微观水平的分子动力学模拟与相应的宏观连续水平的模拟相耦合。非平衡分子动力学技术用于创建微观-宏观界面,其中从详细的微观模型计算出在连续水平上需要输入的传输系数。我们为模型膜提供了结果,其中在空间和时间两个层面对材料进行了建模。考察了分子水平上非弹性扰动对宏观材料性能的影响,以证明该技术的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号