...
首页> 外文期刊>Hydrological Processes >Assessing effects of model complexity and structure on predictions of hydrological responses using serial and parallel model design
【24h】

Assessing effects of model complexity and structure on predictions of hydrological responses using serial and parallel model design

机译:使用串行和并行模型设计评估模型复杂性和结构对水文响应预测的影响

获取原文
获取原文并翻译 | 示例

摘要

By utilizing functional relationships based on observations at plot or field scales, water quality models first compute surface runoff and then use it as the primary governing variable to estimate sediment and nutrient transport. When these models are applied at watershed scales, this serial model structure, coupling a surface runoff sub-model with a water quality sub-model, may be inappropriate because dominant hydrological processes differ among scales. A parallel modeling approach is proposed to evaluate how best to combine dominant hydrological processes for predicting water quality at watershed scales. In the parallel scheme, dominant variables of water quality models are identified based entirely on their statistical significance using time series analysis. Four surface runoff models of different model complexity were assessed using both the serial and parallel approaches to quantify the uncertainty on forcing variables used to predict water quality. The eight alternative model structures were tested against a 25-year high-resolution data set of streamflow, suspended sediment discharge, and phosphorous discharge at weekly time steps. Models using the parallel approach consistently performed better than serial-based models, by having less error in predictions of watershed scale streamflow, sediment and phosphorus, which suggests model structures of water quantity and quality models at watershed scales should be reformulated by incorporating the dominant variables. The implication is that hydrological models should be constructed in a way that avoids stacking one sub-model with one set of scale assumptions onto the front end of another sub-model with a different set of scale assumptions.
机译:通过利用基于地块或田间规模的观测值的函数关系,水质模型首先计算地表径流,然后将其用作估算沉积物和养分运移的主要控制变量。当在流域尺度上应用这些模型时,将地表径流子模型与水质子模型耦合的这种串行模型结构可能是不合适的,因为主要的水文过程在尺度上有所不同。提出了一种并行建模方法,以评估如何最好地结合主要的水文过程来预测流域尺度的水质。在并行方案中,使用时间序列分析完全根据其统计意义来识别水质模型的主要变量。使用串行和并行方法评估了四个具有不同模型复杂性的地表径流模型,以量化用于预测水质的强迫变量的不确定性。以25年的高分辨率数据集测试了这8种替代模型结构,这些数据集是在每周的时间步长上进行的,包括水流,悬浮泥沙排放和磷排放。使用并行方法的模型在流域尺度的水流,沉积物和磷的预测中具有较小的误差,因此其性能始终优于基于序列的模型,这表明应通过纳入主要变量来重新制定流域尺度的水量和水质模型的模型结构。这意味着水文模型的构建应避免将具有一组比例假设的一个子模型堆叠到具有一组不同比例假设的另一个子模型的前端。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号