首页> 外文期刊>IMA Journal of Applied Mathematics >Long-wave linear stability theory for two-fluid channel flow including compressibility effects
【24h】

Long-wave linear stability theory for two-fluid channel flow including compressibility effects

机译:包含压缩效应的双流道流动的长波线性稳定性理论

获取原文
获取原文并翻译 | 示例
       

摘要

We present the linear stability of the laminar flow of an immiscible system of a compressible gas and incompressible liquid separated by an interface with large surface tension in a thin inclined channel. The flow is driven by an applied pressure drop and gravity. Following the air–water case, which is found in a variety of engineering systems, the ratio of the characteristic values of the gas and liquid densities and viscosities are assumed to be disparate. Under the lubrication approximation, and assuming ideal gas behaviour and isothermal conditions, this approach leads to a coupled non-linear system of partial differential equations describing the evolution of the interface between the gas and the liquid and the streamwise density distribution of the gas. This system also includes the effects of viscosity stratification, inertia, shear and capillarity. A linear stability analysis that allows for physically relevant non-zero pressure-drop base state is then performed. In contrast to the zero-pressure drop case which is amenable to the classical normal-mode approach, this configuration requires numerically solving a boundary-value problem for the gas density and interfacial deviations from the base state in the streamwise coordinate. We find that the effect of the gas compressibility on the interfacial stability in the limit of vanishingly small wavenumber is destabilizing, even for Stokes flow in the liquid. However, for finite wavenumber disturbances, compressibility may have stabilizing effects. In this regime, sufficient shear is required to destabilize the flow.
机译:我们提出了可压缩气体和不可压缩液体的不混溶系统的层流的线性稳定性,该系统被薄的倾斜通道中具有大表面张力的界面隔开。流动由施加的压降和重力驱动。根据在各种工程系统中发现的空气-水情况,假定气体和液体的密度和粘度的特征值之比是完全不同的。在润滑近似下,并假设理想的气体行为和等温条件,该方法导致描述了气体和液体之间的界面的演变以及气体的流向密度分布的耦合非线性方程组的偏微分方程。该系统还包括粘度分层,惯性,剪切和毛细作用的影响。然后执行允许物理相关的非零压降基本状态的线性稳定性分析。与适用于经典法线模式方法的零压降情况相反,此配置需要在数值上解决气体密度的边界值问题以及在流向坐标中与基本状态的界面偏差。我们发现,即使对于斯托克斯在液体中的流动,在可压缩的小波数范围内,气体可压缩性对界面稳定性的影响也是不稳定的。但是,对于有限的波数扰动,可压缩性可能具有稳定作用。在这种情况下,需要足够的剪切力来使流量不稳定。

著录项

  • 来源
    《IMA Journal of Applied Mathematics》 |2006年第5期|715-739|共25页
  • 作者单位

    Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada T6G 2G6;

    Department of Mathematical Sciences Center for Applied Mathematics and Statistics New Jersey Institute of Technology Newark NJ 07102 USA;

    Franklin W. Olin College of Engineering Needham MA 02492 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号