首页> 外文期刊>Heat transfer >Evaluation of FEM Electric Field Analysis Using the Electric Properties of Giant Unilamellar Vesicles (GUV) and Jurkat Cells Measured by Electrorotation Spectroscopy: Introduction of Cryo-and Lyoprotectants by Electrofusion of GUVs and Living Cells
【24h】

Evaluation of FEM Electric Field Analysis Using the Electric Properties of Giant Unilamellar Vesicles (GUV) and Jurkat Cells Measured by Electrorotation Spectroscopy: Introduction of Cryo-and Lyoprotectants by Electrofusion of GUVs and Living Cells

机译:利用电旋转光谱法测量的巨型单层囊泡(GUV)和Jurkat细胞的电特性评估FEM电场分析:通过GUV和活细胞的电融合引入冷冻保护剂和冻干保护剂

获取原文
获取原文并翻译 | 示例
       

摘要

Electrofusion of giant unilamellar vesicles (GUVs) and living cells is a gentle method for delivering membrane impermeable cryo-/lyo-protective molecules into living cells for cryo-/lyopreservation. In this method, an optimal length and strength of an electric pulse are required to initiate GUV-cell fusion. Calculating the electric field by the finite element method (FEM) might be a powerful analytical method for prediction of the optimal pulse length and strength of a deformed and adhered GUV-cell. The objective of this study is to clarify whether an FEM model of a pulsed GUV or cell could be applicable for prediction of its electric field, especially the change of membrane potential. First, electric properties of GUVs and Jurkat cells were derived from electrorotation spectra with a dipole approximation model. Secondly, the electric field and the membrane potential of a single GUV or cell after applying a stepwise electric field were calculated by an FEM model using the measured electric properties. At the first stage after applying a step electric field, the calculated membrane potential by the FEM model shows good agreement with the membrane potential derived from the dipole approximation model. After complete relaxation of the electric field, the calculated membrane potential of the FEM model is lower than that of the dipole approximation model. This might be because both models do not take into account the effects of electric double layers on both sides of the membrane.
机译:巨大的单层囊泡(GUV)和活细胞的电融合是一种将不透膜的冷冻/冻干保护分子递送到活细胞中进行冷冻/冻干保存的温和方法。在这种方法中,需要最佳的电脉冲长度和强度来启动GUV细胞融合。通过有限元方法(FEM)计算电场可能是预测变形和粘附的GUV电池的最佳脉冲长度和强度的有力分析方法。这项研究的目的是阐明脉冲GUV或细胞的FEM模型是否可用于预测其电场,特别是膜电位的变化。首先,利用偶极近似模型从电旋转光谱中得出GUV和Jurkat细胞的电特性。其次,使用测得的电特性通过FEM模型计算单个GUV或施加逐步电场后的电池的电场和膜电位。在施加阶跃电场后的第一阶段,通过FEM模型计算出的膜电位与从偶极近似模型得出的膜电位具有很好的一致性。电场完全松弛后,FEM模型的计算膜电位低于偶极近似模型的膜电位。这可能是因为两个模型都没有考虑薄膜两侧的双电层的影响。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号