首页> 外文期刊>Heat transfer >Application of differential transform method to unsteady free convective heat transfer of a couple stress fluid over a stretching sheet
【24h】

Application of differential transform method to unsteady free convective heat transfer of a couple stress fluid over a stretching sheet

机译:微分变换法在拉伸板上偶应力流体的非定常自由对流换热中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

In the present article, the transient rheological boundary layer flow over a stretching sheet with heat transfer is investigated, a topic of relevance to non-Newtonian thermal materials processing. Stokes couple stress model is deployed to simulate non-Newtonian characteristics. Similarity transformations are utilized to convert the governing partial differential equations into nonlinear ordinary differential equations with appropriate wall and free stream boundary conditions. The nondimensional boundary value problem emerging is shown to be controlled by a number of key thermophysical and rheological parameters, namely the rheological couple stress parameter (β), unsteadiness parameter (A), Prandtl number (Pr), buoyancy parameter (λ). The semi-analytical differential transform method (DTM) is used to solve the reduced nonlinear coupled ordinary differential boundary value problem. A numerical solution is also obtained via the MATLAB built-in solver "bvp4c" to validate the results. Further validation with published results from the literature is included. Fluid velocity is enhanced with increasing couple stress parameter, whereas it is decreased with unsteadiness parameter. Temperature is elevated with couple stress parameter, whereas it is initially reduced with unsteadiness parameter. The flow is accelerated with increasing positive buoyancy parameter (for heating of the fluid), whereas it is decelerated with increasing negative buoyancy parameter (cooling of the fluid). Temperature and thermal boundary layer thickness are boosted with increasing positive values of buoyancy parameter. Increasing Prandtl number decelerates the flow, reduces temperatures, increases momentum boundary layer thickness, and decreases thermal boundary layer thickness. Excellent accuracy is achieved with the DTM approach.
机译:在本文中,研究了瞬态流变边界层在传热时在拉伸片上的流动,这是与非牛顿热材料加工有关的一个话题。部署斯托克斯偶应力模型来模拟非牛顿特性。利用相似变换将控制性偏微分方程转换为具有适当壁面和自由流边界条件的非线性常微分方程。已显示出出现的无量纲边界值问题受许多关键的热物理和流变参数控制,即流变偶应力参数(β),不稳定参数(A),普朗特数(Pr),浮力参数(λ)。使用半解析微分变换法(DTM)来解决简化的非线性耦合的普通微分边值问题。还可以通过MATLAB内置求解器“ bvp4c”获得数值解,以验证结果。包括来自文献的已公开结果的进一步验证。流体速度随着耦合应力参数的增加而提高,而随着不稳定参数而降低。温度随着耦合应力参数而升高,而温度最初随着不稳定参数而降低。流量随着正浮力参数的增加(用于加热流体)而加速,而随着负浮力参数的增加(流体的冷却)而减速。随着浮力参数正值的增加,温度和热边界层的厚度会增加。增加Prandtl数会使流量减速,降低温度,增加动量边界层厚度并减小热边界层厚度。 DTM方法可实现出色的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号