首页> 外文期刊>Heat and mass transfer >Effects of film flow rate on falling film flow with dominant evaporation and simultaneous evaporation and boiling
【24h】

Effects of film flow rate on falling film flow with dominant evaporation and simultaneous evaporation and boiling

机译:薄膜流速对膜流量的影响,具有主导蒸发和同时蒸发和沸腾

获取原文
获取原文并翻译 | 示例
           

摘要

Numerous industrial applications of falling film flows alongside its heat and mass transfer complexities appreciate some deep and detailed studies. In order to recognize the influences of film flow rate on the modality of heat transfer coefficient, the falling flow of R-245fa at saturation pressure of 123.8 kPa around the horizontal tube has been simulated at different Reynolds numbers of 357, 500, 900 and 1200 and two wall heat fluxes (6 and 36 kW/m~2) by which dominant evaporation and simultaneous evaporation and boiling contributes. Present numerical model is acquired based on volume of fluid two-phase method and Lee phase change model. In comparison with the experimental data, Lee phase change model can accurately simulate sole evaporation and simultaneous evaporation and boiling. Variation of film thickness around the tube after phase change, velocity and temperature profiles has been utilized to discover the behavior of heat transfer coefficient. The results show that increasing Reynolds number increases heat transfer coefficient of the flow with dominant convective evaporation. The values of heat transfer coefficient of flows with Reynolds numbers of 357, 500, 900 and 1200 are 1600, 1605, 1790 and 1845 W/m~2-K, respectively. But when boiling also contributes at higher heat flux, film flow rate enhancement decreases the boiling portion and the amount of total heat transfer coefficient is determined by the challenge of increasing evaporation and decreasing boiling. 2800, 2400, 2515, 2425 W/m~2-K are calculated as heat transfer coefficients of respective Reynolds numbers for q = 36 kW/m~2.
机译:落叶薄膜的众多工业应用与其热量和传统传递复杂性均欣赏一些深刻和详细的研究。为了识别薄膜流速对传热系数的模态的影响,在357,500,900和1200的不同雷诺数模拟水平管周围的123.8kPa周围的饱和压力下的R-245Fa的下降流程和两个壁热通量(6和36 kW / m〜2),通过该蒸发和同时蒸发和沸腾贡献。基于流体两相法和LEE相变模型的体积获取现有数值模型。与实验数据相比,Lee相变模型可以精确地模拟唯一蒸发和同时蒸发和沸腾。在相变,速度和温度曲线围绕管膜厚度的变化已经利用来发现传热系数的行为。结果表明,增加的雷诺数增加了具有显性对流蒸发的流动的传热系数。雷诺数357,500,900和1200的流量的传热系数分别为1600,1605,1790和1845W / m〜2-k。但是,当沸腾也有助于较高的热通量时,薄膜流量增强降低沸腾部分,并且总传热系数的量由增加蒸发和沸腾逐渐降低的挑战来确定。 2800,2400,2515,2425W / m〜2-k计算为Q = 36 kW / m〜2的各个雷诺数的传热系数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号