首页> 外文期刊>Heat and mass transfer >Modelling of heat transfer during torrefaction of large lignocellulosic biomass
【24h】

Modelling of heat transfer during torrefaction of large lignocellulosic biomass

机译:大型木质纤维素生物质干馏过程中的热传递模型

获取原文
获取原文并翻译 | 示例
           

摘要

Preparation of feedstock is a major energy intensive process for the thermochemical conversion of biomass into fuel. By eliminating the need to grind biomass prior to the torrefaction process, there would be a potential gain in the energy requirements as the entire step would be eliminated. In regards to a commercialization of torrefaction technology, this study has examined heat transfer inside large cylindrical biomass both numerically and experimentally during torrefaction. A numerical axis-symmetrical 2-D model for heat transfer during torrefaction at 270_(°)C for 1 h was created in COMSOL Multiphysics 5.1 considering heat generation evaluated from the experiment. The model analyzed the temperature distribution within the core and on the surface of biomass during torrefaction for various sizes. The model results showed similarities with experimental results. The effect of L/D ratio on temperature distribution within biomass was observed by varying length and diameter and compared with experiments in literature to find out an optimal range of cylindrical biomass size suitable for torrefaction. The research demonstrated that a cylindrical biomass sample of 50 mm length with L/D ratio of 2 can be torrefied with a core-surface temperature difference of less than 30 °C. The research also demonstrated that sample length has a negligible effect on core-surface temperature difference during torrefaction when the diameter is fixed at 25 mm. This information will help to design a torrefaction processing system and develop a value chain for biomass supply without using an energy-intensive grinding process.
机译:原料的制备是将生物质热化学转化为燃料的主要能源密集型过程。通过消除在烘焙过程之前研磨生物质的需要,由于将消除整个步骤,因此在能量需求方面将有潜在的收益。关于焙干技术的商业化,本研究已经在焙干过程中在数值和实验上研究了大型圆柱形生物质内部的热传递。考虑到根据实验评估的热量产生,在COMSOL Multiphysics 5.1中创建了一个在270°C(°C)下烘烤1h时的热传递过程中的数值对称的二维轴对称模型。该模型分析了烘焙过程中各种尺寸的核心内部和生物质表面的温度分布。模型结果与实验结果相似。通过改变长度和直径来观察L / D比对生物质内温度分布的影响,并将其与文献中的实验进行比较,以找到适合焙干的圆柱形生物质尺寸的最佳范围。研究表明,可以将L / D比为2的长度为50毫米的圆柱形生物质样品进行烘干,其芯表面温度差小于30°C。研究还表明,当直径固定为25mm时,样品长度对烘焙过程中核心表面温差的影响可忽略不计。这些信息将有助于设计烘焙加工系统并开发生物质供应的价值链,而无需使用耗能的研磨过程。

著录项

  • 来源
    《Heat and mass transfer》 |2018年第7期|1989-1997|共9页
  • 作者单位

    School of Engineering, University of Guelph;

    School of Engineering, University of Guelph;

    School of Engineering, University of Guelph;

    School of Engineering, University of Guelph;

    School of Engineering, University of Guelph;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号