首页> 外文期刊>GSA Bulletin >Tectonics and hydrogeology of the northern Barbados Ridge: Results from Ocean Drilling Program Leg 110
【24h】

Tectonics and hydrogeology of the northern Barbados Ridge: Results from Ocean Drilling Program Leg 110

机译:巴巴多斯山脊北部的构造和水文地质:海洋钻探计划第110条腿的结果

获取原文
获取原文并翻译 | 示例
           

摘要

Drilling near the deformation front of the northern Barbados Ridge cored an accretionary prism consisting of imbricately thrusted Neogene hemipelagic sediments detached from little-deformed Oligocene to Campanian underthrust deposits by a décollement zone composed of lower Miocene to upper Oligocene, scaly radiolarian claystone. Biostrati-graphically defined age inversions define thrust faults in the accretionary prism that correlate between sites and are apparent on the seismic reflection sections. Two sites located 12 and 17 km west of the deformation front document continuing deformation of the accreted sediments during their uplift. Deformational features include both large- and small-scale folding and continued thrust faulting with the development of stratal disruption, cataclastic shear zones, and the proliferation of scaly fabrics. These features, resembling structures of accretionary complexes exposed on land, have developed in sediments never buried more than 400 m and retaining 40% to 50% porosity. A single oceanic reference site, located 6 km east of the deformation front, shows incipient deformation at the stratigraphic level of the décollement and pore-water chemistry anomalies both at the décollement level and in a subjacent permeable sand interval. Pore-water chemistry data from all sites define two fluid realms: one characterized by methane and chloride anomalies and located within and below the décollement zone and a second marked solely by chloride anomalies and occurring within the accretionary prism. The thermogenic methane in the décollement zone requires fluid transport many tens of kilometers arcward of the deformation front along the shallowly inclined décollement surface, with minimal leakage into the overlying accretionary prism. Chloride anomalies along faults and a permeable sand layer in the underthrust sequence may be caused by membrane filtration or smectite dewatering at depth. Low matrix permeability requires that fluid flow along faults occurs through fracture permeability. Temperature and geochemical data suggest that episodic fluid flow occurs along faults, probably as a result of deformational pumping.
机译:在巴巴多斯北部的变形锋附近钻探,里奇为一个增生棱柱取芯,该棱柱由松动的 推力的新近纪半沉积物组成,它们从变形程度较小的 渐新世分离到Campanian由下中新世至上渐新世,鳞片放射虫 粘土组成的décollement 带进行的逆冲沉积。生物地层学定义的年龄反演在增生棱镜中定义了 推力断层,这些断层与 站点之间相关,并且在地震反射段上很明显。位于变形前沿文件 以西12和17 km处的两个 站点在 隆升期间使沉积的沉积物继续变形。变形特征包括大范围和小范围的 折叠以及随着 层状破裂,碎裂剪切带和扩散 的发展而产生的持续的逆冲断层。鳞片织物。这些特征类似于暴露在陆地上的增生 复合物的结构,这些特征在从未埋藏超过400 m且保留40%至50%孔隙率的沉积物中形成。一个 单个海洋参考点,位于变形 前东6公里处,显示了地层和孔隙水在地层水平上的初期变形。化学异常 都处于层级和下一个可渗透的 砂层区间。 来自所有站点的孔隙水化学数据定义了两个流体域: sup> 一个以甲烷和氯化物异常为特征,位于 在断陷带内和下方,第二个标记为 ,仅通过氯化物异常发生在增生的 棱镜。分隔区 中的产热甲烷需要沿着浅倾斜décollement 表面向变形锋面几十公里的弧形方向输送流体,并且泄漏最少进入叠加的 棱镜。沿断层的氯离子异常和底推序列中的可渗透砂 层可能是由于膜 过滤或绿土在深度上的脱水而引起的。低基质渗透率 要求沿着断层的流体流是通过裂缝 渗透率发生的。温度和地球化学数据表明 沿着断层发生了离散的流体流动,可能是由于 变形抽水的结果。

著录项

  • 来源
    《GSA Bulletin》 |1988年第10期|1578-1593|共16页
  • 作者单位

    Department of Earth Sciences, University of California at Santa Cruz, Santa Cruz, California 95064;

    Institut Francais du Petrole, 1-4 Ave. Bois-Preau, B.P. 311, 92506 Rueil Malmaison Cedex France;

    Ocean Drilling Program Texas A & M University, College Station, Texas 77843-3469;

    BRGM, BP 6009, 45060 Orleans Cedex-2, France;

    Borehole Research Group, Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York 10964;

    Rosario Geoscience Associates, 104 Harbor Lane, Anacortes, Washington 98221;

    Department des Sciences de la Terre, Universite de Lille, 59655 Villeneuve d'Ascq Cedex, France;

    Institut fuer Geowissenschaften und Lithospherenforschung, Universitaet Giessen, Senckenbergstr. 3, D6300 Giessen, Federal Republic of Germany;

    Laboratorie de Geochimie, Universite Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France;

    Department of Geological Sciences, Durham University, South Road Durham, DH1 3LE, England;

    Department of Geology, LSCB 341, University of South Alabama, Mobile, Alabama 36688;

    Department of Earth Sciences, University of California at Santa Cruz, Santa Cruz, California 95064;

    Division of Marine Geology and Geophysics, University of Miami 4600 Rickenbacker Causeway, Miami, Florida 33149;

    Ocean Research Division A-015, Scripps Institution of Oceanography, La Jolla, California 92093;

    Department of Geology, Beaumont Building, Sheffield University, Brook Hill Sheffield SE 7HF, England;

    Petro-Canada Resources, P.O. Box 2844, Calgary, Alberta, Canada;

    Atlantic Geoscience Center, Bedford Institute of Oceanography, Box 1006, Dartmouth, Nova Scotia B2Y 4A2, Canada;

    Department of Geology, Faculty of Science, Kyushu University 33, Hakozaki, Fukuoka 812, Japan;

    Department of Geology, Faculty of General Education, Utsunomiya University, 350 Mine-machi, Utsunomiya 321, Japan;

    Hawaii Institute of Geophysics, 2525 Correa Road Honolulu, Hawaii 96822;

    Department of Earth Sciences, University of California at Santa Cruz, Santa Cruz, California 95064;

    Earth Resources Laboratory, E34-404 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

    Borehole Research Group, Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York 10964;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号