...
首页> 外文期刊>GSA Bulletin >A sensitivity study of the driving forces on fluid flow during continental-rift basin evolution
【24h】

A sensitivity study of the driving forces on fluid flow during continental-rift basin evolution

机译:大陆裂谷盆地演化过程中驱动力对流体流动的敏感性研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Two-dimensional finite element models of coupled sediment compaction, variable-density ground-water flow, and conductive/convective heat transfer are used in this study to quantify basin hydrodynamics during the initial and flexural stages of continental rifting. The analysis also incorporates a two-stage stretching/cooling geodynamic model of the thermomechanical evolution of the lithosphere underlying the rift in order to specify geologically relevant boundary conditions for basin subsidence and basal heat flow. A sensitivity study is made using the model to explore the controls of both permeability and water table configuration in determining the dominant fluid flow drive (compaction, density, or topography) during basin evolution. The sensitivity analysis incorporates hydrologic conditions and rock properties representative of many extensional terrains. Assuming that rift basin subsidence and basal heat flow can be represented by the geodynamic model, two distinct ground-water flow systems evolve within continental rifts during basin evolution. During the initial (stretching) phase of rifting, subsidence is accommodated by fault block motion, and a topography-driven ground-water flow system develops within the permeable alluvial-fan deposits. Within the less permeable lacustrine facies located in the center of the basin, compaction-driven ground-water flow dominates. Here, the compacting lacustrine sediments focus pore fluids laterally from the basin center into the alluvial-fan deposits due to the relatively large permeability contrast between the two depositional environments. Thermal anomalies resulting from convective heat transfer are restricted to alluvial-fan facies near the basin-framing fault. During the thermal cooling (flexural) stage of basin development, laterally extensive onlap facies are deposited, and density-driven ground-water flow dominates in the permeable alluvial-fan deposits, while compaction-drivenflow continues within the lacustrine and onlap facies. The presence of a permeable aquifer within the onlap facies resulted in long-range fluid transport to the edge of the basin. During both stages of basin evolution, ground-water velocities varied from 10-5 to 10-1 m/yr between the lacustrine and alluvial-fan deposits, respectively. The observed presence of ore mineralization within alluvial-fan deposits of some continental-rift systems, such as the Cretaceous Rift Basin of Angola, supports the findings of this study.
机译:本研究使用二维有限元模型耦合沉积物压实, 可变密度地下水流量和传导/对流 传热,以量化盆地水动力。 > 在大陆裂谷的初始阶段和弯曲阶段。 分析还包含了岩石圈热力学演化的两阶段拉伸/冷却 地球动力学模型。 sup> 在裂谷之下,以便为盆地沉降和基础热流指定地质相关的 边界条件。 使用该模型进行了敏感性研究,以探索控制 渗透率和地下水位配置,从而确定盆地演化过程中的主要流体流驱动力(密实度,密度或地形) 。敏感性分析结合了 的水文条件和岩石特性,代表了许多伸展地形。 假定裂谷盆地的沉降和基础热流可以 < / sup>以地球动力学模型表示,在盆地演化过程中,大陆裂谷内有两个截然不同的地下水流动系统。 在裂谷的初始(伸展)阶段,沉降 被断层块运动所适应,并且地形驱动的 地下水流系统在渗透性冲积扇 沉积物中发育。在盆地中心的 渗透性较低的湖相中,压实作用驱动的地下水流 占主导地位。在这里,由于 之间的相对较大的渗透率差异,致密的湖相沉积物将孔隙 流体从盆地中心横向向冲积扇 沉积。两个沉积环境。对流换热产生的 异常仅限于盆地框架断裂附近的冲积扇 相。在盆地发育的热冷却(弯曲)阶段,沉积了横向扩展的上覆相,并且密度驱动的地下水流占主导地位。渗透性冲积扇沉积物,而压实驱动的流 继续在湖相和上覆相中发生。重叠相内渗透性含水层的存在导致流体向盆地边缘的远距离输运。在盆地演化的两个阶段 ,地下水速度从10 -5 到10 -1 m /在湖泊和冲积扇沉积之间,分别为 。在某些大陆裂谷系统的 冲积扇沉积物中观察到的矿石矿化存在,支持了 >此研究。

著录项

  • 来源
    《GSA Bulletin》 |1994年第4期|461-475|共15页
  • 作者

    MARK PERSON; GRANT GARVEN;

  • 作者单位

    Department of Geology and Geophysics, The University of Minnesota, 310 Pillsbury Avenue, SE, Minneapolis, Minnesota 55455;

    Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland 21218;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号