首页> 外文期刊>Granular matter >Thermal cycling effects on the structure and physical properties of granular materials
【24h】

Thermal cycling effects on the structure and physical properties of granular materials

机译:热循环对粒状材料结构和物理性质的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Over the past two decades, various investigations have shown that the application of thermal cycles of heating and cooling to granular materials causes permanent densification. However, prior to this study, significant associated effects of thermal cycles on the structural reorganization and physical properties of granular materials remained mostly unknown. To address these elusive aspects, this paper investigates the relationship between the microstructural changes induced by thermal cycling and their influence on the physical properties of granular materials using a multiphysical and multiscale computational approach. Microstructural changes are analyzed using coupled thermo-mechanical discrete element simulations and macroscopic physical properties are upscaled using homogenization. Multiple initial porosities and particle size distributions are investigated for a large number of thermal cycles of varying amplitude. Results demonstrate significant variations in the structure and properties of granular materials. Volumetric densification and fabric anisotropy increase monotonically with the amplitude and number of cycles. Coordination number exhibits a maximum for a critical temperature amplitude established theoretically to correspond to an optimal particle rearrangement. Mechanical stiffness and thermal conductivity increase in anisotropic fashion due to stress relaxation and fabric anisotropy and typically exhibit the most variation at the critical temperature amplitude. Intrinsic permeability to fluid flow decreases isotropically and monotonically with the amplitude and number of thermal cycles due to pore volume reduction. The critical temperature amplitude provides a limit to the thermal energy that can seemingly induce optimal and permanent structural reorganizations, as well as maximum variations of specific physical properties of granular materials.
机译:在过去的二十年中,各种调查表明,热循环的加热和冷却至颗粒材料的应用导致永久性致密化。然而,在本研究之前,热循环对粒状材料结构重组和物理性质的显着相关影响仍然是未知的。为了解决这些难以捉摸的方面,本文研究了热循环诱导的微观结构变化与其对粒状材料物理性质的影响,使用多职业和多尺度计算方法对粒状材料的物理性质。使用偶联的热机械离散元素模拟分析微结构变化,并且使用均质化升高宏观物理性质。研究了多个初始孔隙率和粒度分布,用于大量的不同幅度的热循环。结果表明粒状材料结构和性质的显着变化。体积致密化和织物各向异性随着循环幅度和数量单调而单调地增加。协调数字在理论上建立的临界温度幅度最大值,以对应于最佳粒子重新排列。由于应力松弛和织物各向异性,各向异性时的机械刚度和导热率增加,并且通常在临界温度振幅下表现出最大的变化。流体流动的固有渗透性随着孔隙体积减少而单调地随着各向同性和单调的热循环而单调。临界温度幅度为热能提供了极限,似乎可以似乎诱导最佳和永久结构重组,以及颗粒材料的特定物理性质的最大变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号