首页> 外文期刊>Energy Conversion & Management >Influence of accelerated thermal charging and discharging cycles on thermo-physical properties of organic phase change materials for solar thermal energy storage applications
【24h】

Influence of accelerated thermal charging and discharging cycles on thermo-physical properties of organic phase change materials for solar thermal energy storage applications

机译:加速的热充放电循环对太阳能储热应用中有机相变材料热物理性质的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Integration of appropriate thermal energy storage system plays a predominant role in upgrading the efficiency of solar thermal energy devices by reducing the incongruity between energy supply and demand. Latent heat thermal energy storage based on phase change materials (PCM) is found to be the most efficient and prospective method for storage of solar thermal energy. Ensuring the thermal reliability of PCM through large number of charging (melting) and discharging (solidification) cycles is a primary prerequisite to determine the suitability of PCM for a specific thermal energy storage applications. The present study explains the experimental analysis carried out on two PCM's namely benzamide and sebacic acid to check the compatibility of the material in solar thermal energy storage applications. The selected materials were subjected to one thousand accelerated melting and solidification cycles in order to investigate the percentage of variation at different stages on latent heat of fusion, phase transition temperature, onset and peak melting temperature. Differential Scanning Calorimeter (DSC) was used to determine the phase transition temperature and heat of fusion upon completion of every 100 thermal cycles and continued up to 1000 cycles. Relative Percentage Difference (RPD%) is calculated to find out the absolute deviation of melting temperature and latent heat of fusion with respect to zeroth cycle. The experimental study recorded a melting temperatures of benzamide and sebacic acid as 125.09 degrees C and 135.92 degrees C with latent heat of fusion of 285.1 (J/g) and 374.4 (jig). The maximum RPD for melting temperature and heat of fusion for benzamide was calculated as 0.02% and -14.83% whereas sebacic acid it was -0.85% and -6.06% upon 1000 thermal cycles. The study revealed that both benzamide and sebacic acid are potential candidates for thermal energy storage due to their superior thermal reliability characteristics even after one thousand thermal cycles. (C) 2015 Elsevier Ltd. All rights reserved.
机译:通过减少能源供需之间的不协调,适当的热能存储系统的集成在提高太阳能热能设备的效率方面起着主要作用。基于相变材料(PCM)的潜热热能存储被认为是存储太阳能热能的最有效,最有前景的方法。通过大量的充电(熔化)和放电(固化)循环来确保PCM的热可靠性是确定PCM适用于特定热能存储应用的主要前提。本研究解释了对两种PCM(即苯甲酰胺和癸二酸)进行的实验分析,以检查该材料在太阳能储热应用中的相容性。选定的材料经过一千次加速熔融和凝固循环,以研究不同阶段的熔化潜热,相变温度,起始温度和峰值熔融温度的变化百分比。差示扫描量热仪(DSC)用于确定每100个热循环完成并持续多达1000个循环的相变温度和熔化热。计算相对百分比差(RPD%),以求出相对于零循环的熔融温度和熔融潜热的绝对偏差。实验研究记录了苯甲酰胺和癸二酸的熔融温度分别为125.09摄氏度和135.92摄氏度,熔融潜热分别为285.1(J / g)和374.4(jig)。在1000次热循环中,计算得出的苯甲酰胺的熔融温度和熔融热的最大RPD为0.02%和-14.83%,而癸二酸的最大RPD为-0.85%和-6.06%。研究表明,即使经过一千次热循环,苯甲酰胺和癸二酸都具有潜在的储热潜力,因为它们具有出色的热可靠性。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号