首页> 外文期刊>Granular matter >Pore-scale modeling of water-phase fragmentation in simulated soils with realistic pore geometry
【24h】

Pore-scale modeling of water-phase fragmentation in simulated soils with realistic pore geometry

机译:具有真实孔隙几何形状的模拟土壤中水相破碎的孔隙尺度模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Bacterial diversity in soil is extremely high, and evidence suggests that spatial isolation created by fragmented aquatic microhabitats in unsaturated soil plays a large part in creating this diversity. Soil texture determines the extent and connectivity of hydrated microbial microhabitats through its influence on the pore size distribution. In this study we simulate pore-scale water retention processes in soils of varying textures. We develop a novel methodology for generating realistic soil particle shapes, conforming to experimentallydetermined sphericity and roundness values for sand and silt particles. We then employ the lattice Boltzmann method, using a 3-D single-component multiphase model to simulate equilibrium water configurations in a series of simulated soils, and quantify the fragmentation of the water phase by identifying isolated water pockets that could serve as bacterial microhabitats. Pocket counts at a range of liquid saturations were dominated by filling of small pores created by domains of high silt content, which was a realistic depiction of the fragmentation behavior for the finest-textured soil. Fragmentationmeasures in the coarser soils showed sensitivity to a thresholding parameter controlling thickness of liquid films on rough surfaces of soil grains, indicating the importance of such films in controlling fragmentation in coarse soils. This work highlights the differential mechanisms controlling hydraulic fragmentation in soils of different textures: filling of pores due to capillary forces in finer soils, and disconnected water films on grain surfaces in coarser soils. Follow-onwork will include grid refinement to better resolve the spatial distribution of surface films in coarse soils.
机译:土壤中的细菌多样性极高,证据表明,不饱和土壤中零散的水生微生境造成的空间隔离在创造这种多样性中起很大作用。土壤质地通过其对孔径分布的影响来决定水合微生物微生境的程度和连通性。在这项研究中,我们模拟了质地不同的土壤中孔隙尺度的保水过程。我们开发了一种新颖的方法来生成逼真的土壤颗粒形状,并符合实验确定的沙粒和粉尘颗粒的球形度和圆度值。然后,我们采用格子Boltzmann方法,使用3-D单组分多相模型来模拟一系列模拟土壤中的平衡水构型,并通过识别可以用作细菌微生境的孤立水袋来量化水相的破碎。在一定的液体饱和度范围内,袋装计数主要由高淤泥含量区域产生的小孔的填充所决定,这是对质地最细的土壤的破碎行为的真实描述。较粗糙土壤中的破碎措施显示出对控制土壤颗粒粗糙表面上液膜厚度的阈值参数的敏感性,表明此类膜在控制粗糙土壤中破碎的重要性。这项工作强调了控制不同质地土壤中水力破碎的不同机制:在较细的土壤中由于毛细作用而填充孔隙,在较粗的土壤中颗粒表面的水膜不连续。后续工作将包括网格优化,以更好地解决粗糙土壤中表面膜的空间分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号