首页> 外文期刊>Global and planetary change >Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped soils
【24h】

Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped soils

机译:全球尺度DAYCENT温室气体排放的模型分析和耕作土壤的缓解策略

获取原文
获取原文并翻译 | 示例
       

摘要

Conversion of native vegetation to cropland and intensification of agriculture typically result in increased greenhouse gas (GHG) emissions (mainly N_2O and CH_4) and more NO_3 leached below the root zone and into waterways. Agricultural soils are often a source but can also be a sink of CO_2. Regional and larger scale estimates of GHG emissions are usually obtained using 1PCC emission factor methodology, which is associated with high uncertainty. To more realistically represent GHG emissions we used the DAYCENT biogeochemical model for non-rice major crop types (corn, wheat, soybean). IPCC methodology estimates N losses from croplands based solely on N inputs. In contrast, DAYCENT accounts for soil class, daily weather, historical vegetation cover, and land management practices such as crop type, fertilizer additions, and cultivation events. Global datasets of weather, soils, native vegetation, and cropping fractions were mapped to a 1.9° × 1.9° resolution. Non-spatial data (e.g., rates and dates of fertilizer applications) were assumed to be identical within crop types across regions. We compared model generated baseline GHG emissions and N losses for irrigated and rainfed cropping with land management alternatives intended to mitigate GHG emissions. Reduced fertilizer resulted in lower N losses, but crop yields were reduced by a similar proportion. Use of nitrification inhibitors and split fertilizer applications both led to increased (-6%) crop yields but the inhibitor led to a larger reduction in N losses (-10%). No-till cultivation, which led to C storage, combined with nitrification inhibitors, resulted in reduced GHG emissions of -50% and increased crop yields of -7%.
机译:原生植被向农田的转化和农业集约化通常会导致温室气体(GHG)排放增加(主要是N_2O和CH_4),而更多的NO_3则从根部区域渗入水道。农业土壤通常是来源,但也可以是CO_2的汇。通常使用1PCC排放因子方法获得区域和更大范围的GHG排放估算,这与高度不确定性相关。为了更真实地表示温室气体排放,我们对非稻类主要农作物类型(玉米,小麦,大豆)使用了DAYCENT生物地球化学模型。政府间气候变化专门委员会的方法仅根据氮的投入估算农田的氮损失。相比之下,DAYCENT负责土壤分类,日常天气,历史植被覆盖以及土地管理实践(例如作物类型,肥料添加和耕种事件)。将天气,土壤,原生植被和种植比例的全球数据集映射到1.9°×1.9°分辨率。假设跨区域的作物类型中的非空间数据(例如肥料的施用率和日期)相同。我们将模型产生的基线温室气体排放量以及灌溉和雨养作物的氮素损失与旨在减轻温室气体排放量的土地管理替代方案进行了比较。化肥减少导致氮素损失减少,但农作物产量却减少了相似的比例。硝化抑制剂的使用和化肥的施用均增加了农作物的产量(-6%),但抑制剂导致了氮素损失的较大减少(-10%)。免耕种植导致C的储存,再加上硝化抑制剂,导致温室气体排放减少了-50%,农作物产量增加了-7%。

著录项

  • 来源
    《Global and planetary change》 |2009年第2期|44-50|共7页
  • 作者单位

    USDA-Agricultural Research Service, Natural Resources Research Center, 2150 Centre Ave., Building D, Suite WO, Fort Collins, CO 80526-8119, United States Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, United States;

    Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, United States;

    Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, United States;

    Center for Environmental Systems Research, University of Kassel, Germany;

    Center for Environmental Systems Research, University of Kassel, Germany;

    US Environmental Protection Agency, Washington, D.C. 20460, United States;

    US Environmental Protection Agency, Washington, D.C. 20460, United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    global change; greenhouse gas mitigation; ecosystem modeling; agriculture;

    机译:全球变化;减少温室气体;生态系统建模;农业;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号