首页> 外文期刊>Global and planetary change >Lead-lag relationships between global mean temperature and the atmospheric CO2 content in dependence of the type and time scale of the forcing
【24h】

Lead-lag relationships between global mean temperature and the atmospheric CO2 content in dependence of the type and time scale of the forcing

机译:全球平均温度与大气CO2含量之间的超前-滞后关系取决于强迫的类型和时间尺度

获取原文
获取原文并翻译 | 示例
       

摘要

By employing an Earth system model of intermediate complexity (EMIC) developed at the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM), mutual lags between global mean surface air temperature, T and the atmospheric CO2 content, q, in dependence of the type and time scale of the external forcing are explored. In the simulation, which follows the protocol of the Coupled Models Intercomparison Project, phase 5, T leads q for volcanically-induced climate variations. In contrast, T lags behind q for changes caused by anthropogenic CO2 emissions into the atmosphere. In additional idealized numerical experiments, driven by periodic external emissions of carbon dioxide into the atmosphere, T always lags behind q as expected. In contrast, if the model is driven by the periodic non-greenhouse radiative forcing, T leads q for the external forcing time scale <= 4 x10(2) yr, while q leads Tat longer scales. The latter is an example that lagged correlations do not necessarily represent causal relationships in a system. This apparently counter-intuitive result, however, is a direct consequence of i) temperature sensitivity of the soil carbon stock (which decreases if climate is warmed and increases if climate is cooled), ii) conservation of total mass of carbon in the system in the absence of external carbon emissions, iii) increased importance of the oceanic branch of the carbon cycle at longer time scales. The results obtained with an EMIC are further interpreted with a conceptual Earth system model consisting of an energy balance climate model and a globally averaged carbon cycle model. The obtained results have implications to the empirical studies attempting to understand the origins of the contemporary climate change by applying lead lag relationships to empirical data. (C) 2016 Elsevier B.V. All rights reserved.
机译:通过采用A.M.开发的中等复杂程度(EMIC)地球系统模型。俄罗斯科学院奥布霍夫大气物理研究所(IAP RAS CM),探索了全球平均地面气温T和大气CO2含量q之间的相互滞后关系,这取决于外部强迫的类型和时间尺度。在模拟中,该模拟遵循“耦合模型比较项目”的协议,阶段5,T导致q火山诱发的气候变化。相反,由于人为排放到大气中的CO2引起的变化,T落后于q。在额外的理想化数值实验中,在周期性向大气中排放二氧化碳的驱动下,T总是如预期的那样滞后于q。相反,如果模型是由周期性的非温室辐射强迫驱动的,则对于外部强迫时间尺度<= 4 x10(2)yr,T领先q,而更长的尺度则领先t。后者是滞后相关不一定代表系统中因果关系的示例。然而,这显然是违反直觉的结果,这是以下直接结果:i)土壤碳储量的温度敏感性(如果气候变暖则降低,而气候变冷则升高),ii)保留碳在系统中的总质量在没有外部碳排放的情况下,iii)在更长的时间范围内,碳循环海洋分支的重要性日益提高。使用EMIC获得的结果将通过概念性的地球系统模型进一步解释,该模型由能量平衡气候模型和全球平均碳循环模型组成。通过将超前滞后关系应用于经验数据,所得结果对试图了解当代气候变化起源的经验研究具有启示意义。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号