首页> 外文期刊>Glass Structures & Engineering >Adhesive connections in glass structures-part II: material parameter identification on thin structural silicone
【24h】

Adhesive connections in glass structures-part II: material parameter identification on thin structural silicone

机译:玻璃结构中的粘接连接,第二部分:薄结构硅树脂上的材料参数识别

获取原文
获取原文并翻译 | 示例
           

摘要

The present paper proposes two methodologies of identifying hyperelastic material parameters of thin structural silicones based on so-called direct and inverse methods. Based on part I of this paper, analytical investigations were performed to conduct homogeneous experiments with structural silicones. To obtain more insight wether or not an experiment provides a homogeneous stress state, the so-called triaxi-ality was introduced, which allows one to illustrate differences between homogeneous and inhomogeneous experiments. With the help of this scalar, it was possible to design experimental test setups, which ensure a homogeneous stress and strain distribution within the tested rubber-like material. Furthermore an engineering approach to determine the testing speed of arbitrary experiments dependent on one reference testing speed and experiment was presented. This approach ensured equivalent strain energies between arbitrary and reference test specimens during testing, by which expensive strain rate controlled experiments can be relinquished. Based on these analytical studies, experimental data could be provided for the material parameter identification, which exhibits firstly a nearly homogeneous stress state in accordance to the desired stress and strain field of the applied mathematical model and secondly providing nearly equivalent strain energies within different experimental test set-ups and geometries of test specimens. Returning to the present paper, the first methodology identifies simultaneously hyperelastic material parameters based on a set of conventional and homogeneous experimental tests, like uniaxial tension and uniaxial compression, biaxial tension as well as shear-pancake tests. The second methodology determines inversely hyperelastic material parameters utilizing the inverse Finite Element Method based on one single unconventional and inhomogeneous experimental test, here a microindentation test. The main idea is to obtain reliable hyperelastic material parameters based on a single, inhomogeneous experiment to avoid many, time-consuming homogeneous experiments. To validate the inversely determined hyperelastic material parameters, simultaneous multi-experiment data fits are performed to relate the obtained material parameters to those of the microindentation tests. Considering the set of homogeneous experiments, two clas-sical hyperelastic constitutive equations (Neo-Hooke and Mooney-Rivlin) were utilized to determine constitutive parameters. Due to the simplicity of the classical material laws, a more sophisticated, novel phe-nomenological hyperelastic material law will be proposed and compared with the results of the classical models respectively the results obtained by a modern hyperelastic material model after Kaliske & Hein-rich, which generally delivers outstanding results for the material parameter identification.
机译:本文提出了两种基于所谓的直接和反向方法来识别薄结构有机硅超弹性材料参数的方法。基于本文的第一部分,进行了分析研究以对结构有机硅进行均质实验。为了获得更多的见识,无论实验是否提供均质应力状态,都引入了所谓的三轴性,从而可以说明均质和不均质实验之间的差异。借助该标量,可以设计实验性的测试装置,以确保被测橡胶状材料内的应力和应变分布均匀。此外,提出了一种工程方法来确定依赖于一个参考测试速度和实验的任意实验的测试速度。这种方法确保了测试期间任意试样和参考试样之间的等效应变能,从而可以放弃昂贵的应变速率控制实验。基于这些分析研究,可以为材料参数识别提供实验数据,该数据首先根据所应用数学模型的所需应力和应变场表现出近似均质的应力状态,其次在不同的实验测试中提供几乎相等的应变能试样的结构和几何形状。返回到本文,第一种方法基于一组常规且均匀的实验测试,同时识别超弹性材料参数,如单轴拉伸和单轴压缩,双轴拉伸以及剪切薄饼测试。第二种方法是利用逆有限元法,基于一个非常规且非均匀的实验测试(这里是微压痕测试)来确定反超弹性材料参数。主要思想是基于单个不均匀的实验来获得可靠的超弹性材料参数,从而避免进行许多耗时的均匀实验。为了验证反向确定的超弹性材料参数,同时进行多实验数据拟合,以将获得的材料参数与微压痕测试的材料参数相关联。考虑到一组均质实验,利用两个经典超弹性本构方程(Neo-Hooke和Mooney-Rivlin)确定本构参数。由于经典材料定律的简单性,将提出一种更复杂,新颖的现象学超弹性材料定律,并将其与经典模型的结果进行比较,分别将经典超弹性材料模型在Kaliske&Hein-rich,通常在材料参数识别方面提供出色的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号