首页> 外文期刊>Geophysical Prospecting >Convolutional neural networks for automated microseismic detection in downhole distributed acoustic sensing data and comparison to a surface geophone array
【24h】

Convolutional neural networks for automated microseismic detection in downhole distributed acoustic sensing data and comparison to a surface geophone array

机译:井下分布式声学传感数据中自动微震检测的卷积神经网络及曲面地震仪阵列的比较

获取原文
获取原文并翻译 | 示例
       

摘要

Distributed acoustic sensing is a growing technology that enables affordable downhole recording of strain wavefields from microseismic events with spatial sampling down to similar to 1 m. Exploiting this high spatial information density motivates different detection approaches than typically used for downhole geophones. A new machine learning method using convolutional neural networks is described that operates on the full strain wavefield. The method is tested using data recorded in a horizontal observation well during hydraulic fracturing in the Eagle Ford Shale, Texas, and the results are compared to a surface geophone array that simultaneously recorded microseismic activity. The neural network was trained using synthetic microseismic events injected into real ambient noise, and it was applied to detect events in the remaining data. There were 535 detections found and no false positives. In general, the signal-to-noise ratio of events recorded by distributed acoustic sensing was lower than the surface array and 368 of 933 surface array events were found. Despite this, 167 new events were found in distributed acoustic sensing data that had no detected counterpart in the surface array. These differences can be attributed to the different detection threshold that depends on both magnitude and distance to the optical fibre. As distributed acoustic sensing data quality continues to improve, neural networks offer many advantages for automated, real-time microseismic event detection, including low computational cost, minimal data pre-processing, low false trigger rates and continuous performance improvement as more training data are acquired.
机译:分布式声学传感是一种不断增长的技术,使得能够从微震事件的应变波浪的经济实惠的井下记录,其空间采样下降至类似于1米。利用这种高空间信息密度激励不同的检测方法,而不是用于井下地震孔的不同检测方法。描述了使用卷积神经网络的新机器学习方法,其在全应变波场上操作。使用在Eagle Ford Shale,德克萨斯州的液压压裂过程中记录在水平观察中的数据进行测试,并将结果与​​同时记录微震活动的表面地震静脉阵列进行比较。使用注入真实环境噪声的合成微震事件训练神经网络,并且应用于检测剩余数据中的事件。发现了535个检测,没有误报。通常,通过分布声学感测记录的事件的信噪比低于表面阵列,并且找到了933个表面阵列事件的368。尽管如此,在分布式声学传感数据中发现了167个新事件,该数据在表面阵列中没有检测到的对应物。这些差异可以归因于不同的检测阈值,其取决于幅度和距离到光纤。随着分布式声学传感数据质量继续提高,神经网络为自动化,实时微震事件检测提供了许多优点,包括低计算成本,最小的数据预处理,低假触发速率和连续性能改进,因为获得更多训练数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号