首页> 外文期刊>Geophysical Prospecting >The marine controlled source electromagnetic response of a steel borehole casing: applications for the NEPTUNE Canada gas hydrate observatory
【24h】

The marine controlled source electromagnetic response of a steel borehole casing: applications for the NEPTUNE Canada gas hydrate observatory

机译:钢钻孔套管的海洋控制源电磁响应:加拿大NEPTUNE天然气水合物观测台的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Gas hydrates are a potential energy resource, a possible factor in climate change and an exploration geohazard. The University of Toronto has deployed a permanent seafloor time-domain controlled source electromagnetic (CSEM) system offshore Vancouver Island, within the framework of the NEPTUNE Canada underwater cabled observatory. Hydrates are known to be present in the area and due to their electrically resistive nature can be monitored by 5 permanent electric field receivers. However, two cased boreholes may be drilled near the CSEM site in the near future. To understand any potential distortions of the electric fields due to the metal, we model the marine electromagnetic response of a conductive steel borehole casing. First, we consider the commonly used canonical model consisting of a 100 Ωm, 100 m thick resistive hydrocarbon layer embedded at a depth of 1000 m in a 1 Ωm conductive host medium, with the addition of a typical steel production casing extending from the seafloor to the resistive zone. Results show that in both the frequency and time domains the distortion produced by the casing occurs at smaller transmitter-receiver offsets than the offsets required to detect the resistive layer. Second, we consider the experimentally determined model of the offshore Vancouver Island hydrate zone, consisting of a 5.5 Ωm, 36 m thick hydrate layer overlying a 0.7 Ωm sedimentary half-space, with the addition of two borehole casings extending 300 m into the seafloor. In this case, results show that the distortion produced by casings located within a 100 m safety zone of the CSEM system will be measured at 4 of the 5 receivers. We conclude that the boreholes must be positioned at least 200 m away from the CSEM array so as to minimize the effects of the casings.
机译:天然气水合物是一种潜在的能源,是气候变化和勘探地质灾害的可能因素。多伦多大学在加拿大NEPTUNE水下有线天文台的框架内,在温哥华岛附近部署了永久性海底时域可控源电磁(CSEM)系统。已知该区域中存在水合物,由于它们的电阻特性,可以由5个永久性电场接收器进行监视。但是,不久的将来,在CSEM现场附近可能会钻两个套管井。为了了解金属引起的电场的任何潜在失真,我们对导电钢钻孔套管的海洋电磁响应进行建模。首先,我们考虑常用的规范模型,该模型包括在1Ωm导电基质中埋入深度为1000 m的100Ωm,100 m厚的电阻性碳氢化合物层,并增加了从海底延伸至电阻区。结果表明,在频域和时域中,由套管产生的失真发生在比检测电阻层所需的偏移量小的收发器偏移量处。其次,我们考虑通过实验确定的温哥华岛水合物带模型,该模型由5.5Ωm,36 m厚的水合物层覆盖在0.7Ωm的沉积半空间上,并添加了两个延伸至海底300 m的钻孔套管。在这种情况下,结果表明,将在5个接收器中的4个测量CSEM系统安全区域100 m内的套管产生的变形。我们得出的结论是,钻孔必须放置在距离CSEM阵列​​至少200 m的位置,以最大程度地减少套管的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号