首页> 外文期刊>Geophysical Prospecting >Rock physics modelling of 4D time-shifts and time-shift derivatives using well log data - a North Sea demonstration
【24h】

Rock physics modelling of 4D time-shifts and time-shift derivatives using well log data - a North Sea demonstration

机译:使用测井数据对4D时移和时移导数进行岩石物理建模-北海演示

获取原文
获取原文并翻译 | 示例
           

摘要

Rock physics models for fluid and stress dependency in reservoir rocks are essential for quantification and interpretation of 4D seismic signatures during reservoir depletion and injection. For siliciclastic sandstone reservoirs, the Gassmann theory successfully predicts changes in seismic properties associated with fluid changes. However, our ability to predict the sensitivity to pressure from first principles is poor, especially for cemented sandstones. In this study, we demonstrate how we can use a patchy cement rock physics model to quantify the combined effect of stress and fluid changes in terms of seismic time-shifts and time-shift derivatives during depletion or injection. The time-shifts are estimated directly from well log data without core calibration of stress sensitivity. By assuming non-uniform grain contacts where some grain contacts are cemented and others are loose, we can combine the contact theory for cemented sandstones with the contact theory for loose sands in order to predict stress sensitivity in a patchy cemented sandstone reservoir. Time-shift derivatives are also useful estimates, as this parameter reveals which part of the reservoir is most stress sensitive and contributes most to the cumulative time-shift. We test out our new approach on well log data from Troll East, North Sea and compare the predicted time-shifts with observed 4D seismic time-shifts. We find that there are good agreements between predicted time-shifts and observed time-shifts. Furthermore, we confirm that there are local geological trends controlling the fluid and stress sensitivity of the reservoir sands on Troll East. In particular, we observe a lateral stiffening of the reservoir from west to east, probably associated with the tectonic and burial history of the area. The combined effect of a thinning gas cap and stiffening reservoir sands amplifies the eastward decrease in time-shifts associated with reservoir depletion. We manage to disentangle these two effects using rock physics analysis. It is essential to identify and map the static rock stiffness spatial trends before interpreting time-shifts and time-shift derivatives in terms of dynamic (i.e., 4D) pressure and fluid changes.
机译:储层岩石中流体和应力依赖性的岩石物理模型对于定量和解释储层枯竭和注入过程中的4D地震特征至关重要。对于硅质碎屑砂岩油藏,加斯曼理论成功地预测了与流体变化相关的地震特性的变化。但是,我们从第一性原理预测压力敏感性的能力很差,尤其是对于水泥砂岩。在这项研究中,我们演示了如何使用斑驳的水泥岩石物理模型,根据耗竭或注入过程中的地震时移和时移导数来量化应力和流体变化的综合影响。时间偏移是直接从测井数据中估算的,而无需对应力敏感性进行岩心校准。通过假设某些颗粒接触被胶结而另一些则是疏松的非均匀颗粒接触,我们可以将胶结砂岩的接触理论与疏松砂粒的接触理论结合起来,以预测片状胶结砂岩储层的应力敏感性。时移导数也是有用的估计值,因为该参数揭示了储层的哪个部分对应力最敏感,并且对累积时移贡献最大。我们测试了来自北海Troll East的测井数据的新方法,并将预测的时移与观察到的4D地震时移进行了比较。我们发现,预测的时移与观察到的时移之间存在良好的一致性。此外,我们确认存在控制Troll East储层砂的流体和应力敏感性的局部地质趋势。特别是,我们从西向东观察到储层的横向加固,这可能与该地区的构造和埋藏历史有关。气顶变薄和储层砂变硬的共同作用放大了与储层枯竭相关的时移向东的减少。我们设法通过岩石物理分析来解开这两种影响。在根据动态(即4D)压力和流体变化解释时移和时移导数之前,必须先确定并绘制静态岩石刚度空间趋势,然后进行绘制。

著录项

  • 来源
    《Geophysical Prospecting》 |2013年第2期|380-390|共11页
  • 作者单位

    Norwegian University of Science and Technology, Trondheim, Norway, Spring Energy, Oslo, Norway, and Statoil ASA, Bergen, Norway;

    Norwegian University of Science and Technology, Trondheim, Norway, Spring Energy, Oslo, Norway, and Statoil ASA, Bergen, Norway;

    Norwegian University of Science and Technology, Trondheim, Norway, Spring Energy, Oslo, Norway, and Statoil ASA, Bergen, Norway;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    time-shift; rock physics; stress sensitivity;

    机译:时移岩石物理学;压力敏感性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号