首页> 外文期刊>Geomorphology >Application of field geophysics in geomorphology: Advances and limitations exemplified by case studies
【24h】

Application of field geophysics in geomorphology: Advances and limitations exemplified by case studies

机译:现场地球物理学在地貌学中的应用:案例研究举例说明了进展和局限性

获取原文
获取原文并翻译 | 示例
           

摘要

During the last decade, the use of geophysical techniques has become popular in many geomorphological studies. However, the correct handling of geophysical instruments and the subsequent processing of the data they yield are difficult tasks. Furthermore, the description and interpretation of geomorphological settings to which they apply can significantly influence the data gathering and subsequent modelling procedure (e.g. achieving a maximum depth of 30 m requires a certain profile length and geophone spacing or a particular frequency of antenna). For more than three decades geophysical techniques have been successfully applied, for example, in permafrost studies. However, in many cases complex or more heterogeneous subsurface structures could not be adequately interpreted due to limited computer facilities and time consuming calculations. As a result of recent technical improvements, geophysical techniques have been applied to a wider spectrum of geomorphological and geological settings. This paper aims to present some examples of geomorphological studies that demonstrate the powerful integration of geophysical techniques and highlight some of the limitations of these techniques. A focus has been given to the three most frequently used techniques in geomorphology to date, namely ground-penetrating radar, seismic refraction and DC resistivity. Promising applications are reported for a broad range of landforms and environments, such as talus slopes, block fields, landslides, complex valley fill deposits, karst and loess covered landforms. A qualitative assessment highlights suitable landforms and environments. The techniques can help to answer yet unsolved questions in geomorphological research regarding for example sediment thickness and internal structures. However, based on case studies it can be shown that the use of a single geophysical technique or a single interpretation tool is not recommended for many geomorphological surface and subsurface conditions as this may lead to significant errors in interpretation. Because of changing physical properties of the subsurface material (e.g. sediment, water content) in many cases only a combination of two or sometimes even three geophysical methods gives sufficient insight to avoid serious misinterpretation. A "good practice guide" has been framed that provides recommendations to enable the successful application of three important geophysical methods in geomorphology and to help users avoid making serious mistakes.
机译:在过去的十年中,地球物理技术的使用在许多地貌学研究中变得很流行。但是,正确处理地球物理仪器以及对其产生的数据进行后续处理是困难的任务。此外,对它们所应用的地貌学设置的描述和解释会极大地影响数据收集和随后的建模程序(例如,达到30 m的最大深度需要一定的剖面长度和地震检波器间距或特定的天线频率)。三十多年来,地球物理技术已成功地应用于多年冻土研究中。然而,由于计算机设备有限和计算耗时,在许多情况下无法充分解释复杂或更不均匀的地下结构。由于最近的技术改进,地球物理技术已被应用于更广泛的地貌和地质环境。本文旨在介绍一些地貌研究实例,这些实例证明了地球物理技术的强大集成,并突出了这些技术的某些局限性。迄今为止,重点关注了地貌学中最常用的三种技术,即探地雷达,地震折射和直流电阻率。据报道在广阔的地貌和环境中有广阔的应用前景,例如距骨斜坡,块田,滑坡,复杂的山谷填土,喀斯特和黄土覆盖的地貌。定性评估突出了合适的地形和环境。这些技术可以帮助回答地貌学研究中尚未解决的问题,例如沉积物厚度和内部结构。但是,基于案例研究可以表明,对于许多地貌和地下条件,不建议使用单一的地球物理技术或单一的解释工具,因为这可能会导致解释上的重大错误。由于地下材料的物理特性(例如沉积物,水含量)发生变化,因此在许多情况下,只有两种甚至有时是三种地球物理方法的组合才能提供足够的洞察力,以避免严重的误解。已制定了“良好做法指南”,其中提供了一些建议,以使三种重要的地球物理方法能够成功应用于地貌学中,并帮助用户避免犯下严重的错误。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号