首页> 外文期刊>Geomorphology >Why did the 1756 Tjellefonna rockslide occur? A back-analysis of the largest historic rockslide in Norway
【24h】

Why did the 1756 Tjellefonna rockslide occur? A back-analysis of the largest historic rockslide in Norway

机译:为什么发生了1756年Tjellefonna岩石滑坡?挪威最大的历史性岩质滑坡的后向分析

获取原文
获取原文并翻译 | 示例
           

摘要

On 22 February 1756 the largest historically recorded rockslide in Norway took place at Tjelle in the Langfjord (Western Norway). The rockslide created three displacement waves of up to 50 m in height that caused 32 casualties and destroyed most houses and boats along the shores of the Langfjord. The trigger and contributing factors leading to the Tjellefonna rockslide are largely unknown and even seismic triggering has previously been suggested. This study provides a thorough back-analysis of the Tjellefonna rockslide using detailed geomorphological, engineering geological and tectonic field mapping in combination with topographic reconstructions, bathymetry analysis, volume estimations and numerical slope stability analysis. The back-scarp and eastern flank of the Tjellefonna scar form several tens of meter high rock walls, while the basal failure surface and other parts of the scar are covered by rock avalanche debris that extend from the back-scarp down to the bottom of the Langfjord. The rockslide occurred in granodioritic gneisses with variably developed metamorphic foliation that is folded and strike parallel to the fjord. Two prominent fault zones are present in close proximity to the Tjellefonna scar; one is steeply SE-dipping (Tjelle fault), while the other one is sub-horizontal to shallow SE-dipping (Ritlehamran fault). Both fault zones are linked to the More-Trondelag Fault Complex, with one of its branches forming the Langfjord lineament and probably also the faults at Tjellefonna. Additionally, there are four persistent joint sets that together with the metamorphic foliation and the Tjelle fault define the back scarp of the rockslide and give a fracturing of the rock mass corresponding to a Geological Strength Index (GSI) of 45-55. The GSI decreases significantly to 10-20 in the fault zones, which form distinct weakness zones in the rock slope. Volume estimates based on a reconstruction of the ante-rockslide topography range from 9.3 to 10.4 million m(3), which is lower than previous volume estimates (12-15 million m(3)). Large portions of the failed rock mass remained on land and only approximately 3.9 million m(3) entered the fiord. The observed discontinuities in the rock mass at Tjellefonna do not allow for a simple kinematic failure mechanism due to the lack of moderately SE-dipping structures. The basal failure surface was most likely not composed of a single structure, but of a complex interplay of fault zones, metamorphic foliation, joints and broken rock bridges. Numerical slope stability modelling highlights that weak fault zones are essential for the development of the failure surface over a long time. This progressive failure was likely aided by low- to medium-magnitude earthquakes that are frequent in the region. Numerical slope stability modelling and historical accounts suggest, however, that heavy, long-lasting rainfall was the triggering factor for the 1756 Tjellefonna rockslide rather than an earthquake. (C) 2016 Elsevier B.V. All rights reserved.
机译:1756年2月22日,挪威最大的有历史记录的滑坡发生在Langfjord的Tjelle(挪威西部)。岩石滑坡产生了三个高度高达50 m的位移波,造成32人伤亡,并摧毁了Langfjord沿岸的大多数房屋和船只。导致Tjellefonna滑坡的触发因素和贡献因素在很大程度上是未知的,甚至以前也曾提出过地震触发的建议。这项研究使用详细的地貌,工程地质和构造场图,结合地形重建,水深分析,体积估计和数值边坡稳定性分析,对Tjellefonna滑坡进行了全面的反分析。 Tjellefonna疤痕的后-和东部侧面形成数十米高的岩壁,而基底破坏面和疤痕的其他部分被岩石雪崩碎屑所覆盖,这些碎屑从后carp延伸到底部。朗峡湾。岩石滑坡发生在花岗片麻岩中,变质的叶面变化多端,折叠并平行于峡湾而行。 Tjellefonna疤痕附近有两个突出的断层带。一种是陡峭的SE浸入(Tjelle断层),而另一种是次水平至浅SE浸入(Ritlehamran断层)。这两个断层带都与More-Trondelag断层复合体相连,其分支之一形成了Langfjord界线,也可能是Tjellefonna的断层。此外,还有四个持续的节理集,它们与变质的页岩和Tjelle断层一起定义了岩石滑坡的后陡角,并给出了对应于45-55的地质强度指数(GSI)的岩体破裂。在断层带中,GSI显着下降至10-20,这在岩石斜坡上形成了明显的弱化带。基于重建前-滑坡地形的体积估算范围从9.3到1,040万平方米(3),低于以前的体积估算(12-15百万平方米(3))。大部分失败的岩体仍留在陆地上,只有大约390万平方米(3)进入峡湾。由于缺乏适度的SE浸入结构,在Tjellefonna的岩体中观察到的不连续性不允许简单的运动学破坏机制。基底破坏面很可能不是由单一的结构组成,而是由断裂带,变质的叶面,节理和碎石桥的复杂相互作用所组成。数值的边坡稳定性模型强调了弱断层带对于长期破坏面的形成至关重要。这种渐进式的破坏很可能是由于该地区频繁发生的中低地震。但是,数值的边坡稳定性建模和历史记录表明,大而持久的降雨是1756年Tjellefonna滑坡的触发因素,而不是地震的触发因素。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号