首页> 外文期刊>Geomorphology >Contemporary sand wedge development in seasonally frozen ground and paleoenvironmental implications
【24h】

Contemporary sand wedge development in seasonally frozen ground and paleoenvironmental implications

机译:季节冻土中当代砂楔的发育及其对古环境的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Contemporary sand wedges and sand veins are active in seasonally frozen ground within the extensive discontinuous permafrost zone in Northwest Territories, Canada. The region has a subarctic continental climate with 291 mm a(-1) precipitation, -4.1 degrees C mean annual air temperature, warm summers (July mean 17.0 degrees C), and cold winters (January mean -26.6 degrees C). Five years of continuous observations indicate that interannual variation of the ground thermal regime is dominantly controlled by winter air temperature and snow cover conditions. At sandy sites, thin snow cover and high thermal conductivity promote rapid freezing, high rates of ground cooling, and low near-surface ground temperatures ( -15 to -25 degrees C), resulting in thermal contraction cracking to depths of 12 m. Cracking potentials are high in sandy soils when air temperatures are -30 degrees C on successive days, mean freezing season air temperatures are =-17 degrees C, and snow cover is 0.15 m thick. In contrast, surface conditions in peatlands maintain permafrost but thermal contraction cracking does not occur because thicker snow cover and the thermal properties of peat prolong freezeback and maintain higher winter ground temperatures. A combination of radiocarbon dating, optical dating, and stratigraphic observations were used to differentiate sand wedge types and formation histories. Thermal contraction cracks that develop in the sandy terrain are filled by surface (allochthonous) and/or host (autochthonous) material during the thaw season. Epigenetic sand wedges infilled with allochthonous sand develop within former beach sediments beneath an active eolian sand sheet. Narrower and deeper syngenetic wedges developed within aggrading eolian sand sheets, whereas wider and shallower antisyngenetic wedges developed in areas of active erosion. Thermal contraction cracking beneath vegetation stabilized surfaces leads to crack infilling by autochthonous host and overlying organic material, with resultant downtuming and subsidence of adjacent strata. Sand wedge development in seasonally frozen ground with limited surface sediment supply can result in stratigraphy similar to ice-wedge and composite-wedge pseudo morphs. Therefore, caution must be exercised when interpreting this suite of forms and inferring paleoenvironments. Crown Copyright (C) 2018 Published by Elsevier B.V. All rights reserved.
机译:在加拿大西北地区广泛的不连续多年冻土带中,季节性冻土中活跃着当代的沙楔和沙脉。该地区为亚北极大陆性气候,降水量为291 mm a(-1),年平均气温为-4.1摄氏度,夏季温暖(7月平均17.0摄氏度),冬季寒冷(1月平均-26.6摄氏度)。五年的连续观测表明,地热状况的年际变化主要受冬季气温和积雪条件控制。在沙地上,薄薄的积雪和高导热系数可促进快速冻结,高地速冷却和低地表近地温度(-15至-25摄氏度),从而导致热收缩破裂至12 m深度。当连续几天气温低于-30摄氏度,平均冻结季节气温低于-17摄氏度,积雪厚度低于0.15 m时,沙质土壤中的开裂可能性很高。相比之下,泥炭地的表面条件保持多年冻土,但不会发生热收缩破裂,因为积雪越厚,泥炭的热特性会延长回冻并维持较高的冬季地面温度。放射性碳测年,光学测年和地层观测的组合被用来区分砂楔类型和地层历史。在融化季节,沙质地形中产生的热收缩裂缝被表层(杂岩)和/或主体(土生)材料填充。充满异源砂的表观生砂楔在活跃的风积砂下的前滩沉积物内发育。逐渐形成的风成沙在较细和较深的同生楔中发育,而在活跃侵蚀区则发育了较宽和较浅的反同生楔。植被稳定表面下的热收缩开裂导致了土生土和上覆的有机物对裂缝的填充,从而导致相邻地层的隆起和下沉。在季节性冰冻的地面上,地表沉积物供应有限,砂楔的发育可能导致地层学类似于冰楔形和复合楔形的假变形。因此,在解释这套形式并推断古环境时必须谨慎行事。官方版权(C)2018,由Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号