首页> 外文期刊>Geofluids >The interplay of permeability and fluid properties as a first order control of heat transport, venting temperatures and order control of heat transport, venting temperatures andventing salinities at mid-ocean ridge hydrothermal systems
【24h】

The interplay of permeability and fluid properties as a first order control of heat transport, venting temperatures and order control of heat transport, venting temperatures andventing salinities at mid-ocean ridge hydrothermal systems

机译:渗透性和流体性质之间的相互作用,作为中洋脊热液系统的热传递,通风温度的一级控制和热传递,通风温度和通风盐度的一级控制

获取原文
获取原文并翻译 | 示例
           

摘要

While the fundamental influence of fluid properties on venting temperatures in mid-ocean ridge (MOR) hydro-nthermal systems is now well established, the potential interplay of fluid properties with permeability in controllingnheat transfer, venting temperatures, and venting salinities has so far received little attention. A series of numericalnsimulations of fully transient fluid flow in a generic, across-axis model of a MOR with a heat input equivalent tonmagmatic supply at a spreading rate of 10 cm yearn)1nshows a strong dependence of venting temperature andnsalinity on the system’s permeability. At high permeability, venting temperatures are low because fluid fluxes arenso high that the basal conductive heating cannot warm the large fluid masses rapidly enough. The highest vent-ning temperature around 400u0002C as well as sub-seafloor fluid phase separation occur when the permeability is justnhigh enough that the fluid flux can still accommodate all heat input for advection, or for lower permeabilitiesnwhere advection is no longer capable to transfer all incoming magmatic heat. In the latter case, additional mecha-nnisms such as eruptions of basaltic magma may become relevant in balancing heat flow in MOR settings. Thenresults can quantitatively be explained by the ‘fluxibility’ hypothesis of Jupp & Schultz (Nature, 403, 2000, 880),nwhich is used to derive diagrams for the relations between basal heat input, permeability and venting tempera-ntures. Its predictive capabilities are tested against additional simulations. Potential implications of this work arenthat permeability in high-temperature MOR hydrothermal systems may be lower than previously thought andnthat low-temperature systems at high permeability may be an efficient way of removing heat at MOR.
机译:虽然现在已经很好地确定了流体性质对中洋脊(MOR)热液系统通风温度的基本影响,但到目前为止,流体性质与渗透率在控制传热,通风温度和通风盐度方面的潜在相互作用几乎没有得到人们的重视。注意。在具有输入热量等效吨岩浆供热且扩散速率为10 cmn-1的MOR的通用,跨轴模型中,一系列全瞬态流体流动的数值模拟显示出通风温度和盐度对系统渗透率的强烈依赖性。在高渗透率下,排气温度低,因为流体通量太高,以至于基础传导加热无法足够快地加热大流体。当渗透率刚好足够高以至于流体通量仍可容纳所有热量输入以进行平流或渗透率较低时,在最高对流温度约为400u0002C时,以及发生海底流体相分离时,对流不再能够转移所有传入的热量岩浆热。在后一种情况下,额外的机制,例如玄武岩浆的爆发,可能与MOR环境中的热流平衡有关。然后,结果可以通过Jupp&Schultz的““适度性”假设(Nature,403,2000,880)进行定量解释,该假设用于得出基础热输入,渗透率和通风温度之间关系的图表。其预测功能已针对其他仿真进行了测试。这项工作的潜在含义是,高温MOR水热系统的渗透率可能比以前认为的要低,并且高渗透率的低温系统可能是MOR散热的有效途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号