...
首页> 外文期刊>Future generation computer systems >Deep spatial-temporal sequence modeling for multi-step passenger demand prediction
【24h】

Deep spatial-temporal sequence modeling for multi-step passenger demand prediction

机译:多步乘客需求预测的深空间序列建模

获取原文
获取原文并翻译 | 示例
           

摘要

Supply-demand imbalance poses significant challenges to transportation systems such as taxis and shared vehicles (cars and bikes) and leads to excessive delays, income loss, and energy consumption. Accurate prediction of passenger demands is an essential step towards rescheduling resources to resolve the above challenges. However, existing work cannot fully capture and leverage the complex nonlinear spatial-temporal relationships within multi-modal data. They either include excessive data from weakly-correlated regions or oversight the correlations among those similar yet geographically distant regions. Moreover, these methods mainly focus on predicting the passenger demand for one future time step, whereas predictions over longer time scales are more valuable for developing efficient vehicle deployment strategies. We propose an end-to-end deep learning based framework to solve the above challenges. Our model comprises three parts: (1) a cascade graph convolutional recurrent neural network to extract spatial-temporal correlations within citywide historical vehicle demand data; (2) two multi-layer LSTM networks to represent the external meteorological data and time meta separately; (3) an encoder-decoder module to fuse the above two parts and decode the representation to achieve prediction over a longer time period into the future. We evaluate our framework on three real-world datasets and show that our model can better capture the spatial-temporal relationships and outperform the most discriminative state-of-the-art methods.
机译:供需不平衡对出租车和共用车辆(汽车和自行车)等运输系统构成了重大挑战,并导致过度延误,收入损失和能源消耗。准确预测乘客需求是重新安排资源以解决上述挑战的重要一步。但是,现有工作无法完全捕获并利用多模态数据内的复杂非线性空间关系。它们要么包括弱相关区域的过度数据或监督这些类似地理位置远处区域之间的相关性。此外,这些方法主要集中在预测一个未来时间步骤的乘客需求,而对更长的时间尺度的预测对于开发有效的车辆部署策略更有价值。我们提出了一个端到端的深度学习框架来解决上述挑战。我们的型号包括三个部分:(1)级联图卷积经常性神经网络,以提取全市历史车辆需求数据中的空间时间相关性; (2)两个多层LSTM网络分别代表外部气象数据和时间元; (3)编码器 - 解码器模块,用于融合上述两个部分并解码表示,以实现更长的时间段的预测到未来。我们在三个现实世界数据集中评估我们的框架,并表明我们的模型可以更好地捕获空间 - 时间关系并优于最辨的最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号