...
首页> 外文期刊>Fusion Science and Technology >Development of Solenoid-Driven and Pneumatic Punches for Launching High-Z Cryogenic Pellets for Tokamak Disruption Mitigation Experiments
【24h】

Development of Solenoid-Driven and Pneumatic Punches for Launching High-Z Cryogenic Pellets for Tokamak Disruption Mitigation Experiments

机译:开发螺线管驱动和气动冲孔,用于发射高Z低温颗粒,用于托卡马克破坏缓解实验

获取原文
获取原文并翻译 | 示例
           

摘要

Mitigation of disruption events in future high energy density tokamaks is essential for machine longevity. The creation of runaway electrons, large electromagnetic forces, and high localized heat loads during a disruption can be devastating to machine components. Shattered pellet injection is currently the most effective method of disruption mitigation. Injection of cryogenically solidified deuterium, neon, or argon (or mixtures thereof) have been shown to efficiently radiate thermal energy of the plasma so that the heat load is distributed on the walls of the machine. Pellets are formed by desublimating gas in the barrel of a pipe gun and fired using a pulse of high-pressure light gas. Current gas gun designs cannot reach sufficient pressure to dislodge pure neon and argon pellets at low temperatures because the material strength is too high. Pellet temperatures must be kept low (to well below the triple-point temperature of the material) to ensure minimal gas flow into the machine due to vapor pressure of the pellet. A gas-driven punch device has been designed and tested to dislodge pure neon or argon pellets. The breakaway strength of a pellet is proportional to the surface area of the pellet in contact with the inner diameter of the barrel. As pellets get larger in diameter, the amount of force needed to dislodge them increases. To better understand the mechanics behind how a punch dislodges a pellet, a solenoid-operated punch was designed so that kinetic energy of the punch, when striking a pellet, can be varied by changing input current to the solenoid. This solenoid punch will be used to determine kinetic energy versus pellet surface area threshold for breakaway. These data will be used to design mechanical punches for use in a high-field tokamak environment. This paper outlines the modeling, design, experimental testing, and results of the punch development activities.
机译:在未来的高能量密度Tokamak中减轻了破坏事件,对于机器寿命至关重要。在破坏期间的失控电子,大电磁力和高局部热负荷的创建可能是对机器组件的破坏性。破碎的颗粒注射是目前最有效的破坏性缓解方法。已经显示出冷冻固化的氘,氖或氩(或其混合物),以有效地辐射等离子体的热能,使得热负荷分布在机器的壁上。通过在管枪的筒中的墨水中的气体形成颗粒并使用高压轻质气体的脉冲烧制。目前的气枪设计不能达到足够的压力,以在低温下脱落纯氖和氩气颗粒,因为材料强度太高。必须保持低(至于材料的三点温度)的颗粒温度,以确保由于颗粒的蒸气压力,在机器中的最小气体流入机器。设计和测试了一种气体驱动的冲床,以脱臼纯氖或氩颗粒。颗粒的分离强度与与枪管的内径接触的颗粒的表面积成比例。随着颗粒直径变大,脱落它们所需的力量增加。为了更好地了解冲孔背向芯片的机制,设计了一种螺线管操作的冲头,使得冲头的动能在撞击颗粒时可以通过改变到螺线管的输入电流来改变。该螺线管冲头将用于确定动能与颗粒表面积阈值进行分离。这些数据将用于设计用于高场Tokamak环境的机械冲头。本文概述了打孔开发活动的建模,设计,实验测试和结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号