首页> 外文会议>EPS Conference on Plasma Physics >Lagrangian particle simulation of neon pellet ablation clouds for plasma disruption mitigation in tokamaks
【24h】

Lagrangian particle simulation of neon pellet ablation clouds for plasma disruption mitigation in tokamaks

机译:诺敦颗粒烧蚀云的拉格朗日粒子模拟托卡马克斯的血浆中断缓解

获取原文

摘要

A leading candidate for the ITER plasma disruption mitigation system is the Shattered Pellet Injection (SPI) [1] that performs fragmentation of a large, frozen, neon-deuterium pellet before its injection into a tokamak, and forms a stream of small fragments into plasma, causing a thermal quench. The pellet ablation problem in tokamaks can be studied on relatively small length scales compared to the tokamak size. By resolving all relevant physics processes such as pellet surface ablation, formation of a dense and cold ablation cloud, deposition of energy of hot electrons in the ablation cloud, heating, ionization and channeling of the ablated material along magnetic field lines by MHD forces, and radiation losses, such local models describe the evolution of the process in great detail and compute pellet ablation rates. Significantly different approximations are used in global pellet ablation models, which study the transport of the ablated material in the entire tokamak. Local studies have been performed using a number of theoretical models with analytical or semi-analytical solutions and one- and two-dimensional numerical simulations [2, 4, 5]. Global studies have been performed using typical MHD codes for tokamak plasmas with the addition of analytic source terms [6, 7]. However, local studies of a single pellet ablation in a spherical or axisymmetric approximation is not sufficient for the study of SPI, when a large number of gas/ plasma clouds, created by the ablation of pellet fragments, partially screen each other from the incoming electron heat flux. Our work intends to fill the gap in this area by developing accurate local 3D simulation models suitable for SPI. In the next phase of our work, our local models will be coupled with the well-known tokamak MHD codes NIMROD and M3D-C1.
机译:ITer等离子体中断缓解系统的主要候选者是破碎的颗粒注射(SPI)[1],其在注射到TOKAMAK之前进行大,冷冻的氖氘颗粒的破碎化,并形成小碎片流入等离子体,导致热骤冷。与Tokamak尺寸相比,可以在相对小的长度尺度上研究托卡马克斯的颗粒消融问题。通过解析所有相关的物理过程,例如颗粒表面消融,形成致密和冷消融云,在消融云中沉积热电子中的热电子,加热,电离和沿MHD力的磁场线,辐射损失,这种本地模型描述了整个细节的过程的演变,并计算了颗粒消融率。在全球颗粒消融模型中使用显着不同的近似,研究整个Tokamak中的烧蚀材料的运输。使用具有分析或半分析解决方案的许多理论模型和二维数值模拟的局部研究[2,4,5]。通过添加分析源术语[6,7],使用典型的MHD代码进行了全球研究。然而,在球形或轴对称近似下的单个颗粒消融的局部研究对于SPI的研究是不足的,当通过颗粒片段的消融产生的大量气体/等离子体云时,从颗粒片段的消融产生,彼此从进入的电子互相筛选热通量。我们的工作旨在通过开发适合SPI的准确本地3D模拟模型来填补该领域的差距。在我们工作的下一阶段,我们的本地模型将与众所周知的Tokamak MHD代码Nimrod和M3D-C1耦合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号