首页> 外文期刊>Fusion Engineering and Design >Studies of liquid-metal erosion and free surface flowing liquid lithium retention of helium at the University of Illinois
【24h】

Studies of liquid-metal erosion and free surface flowing liquid lithium retention of helium at the University of Illinois

机译:伊利诺伊大学研究液态金属腐蚀和自由表面流动的氦气中液态锂的保留

获取原文
获取原文并翻译 | 示例
       

摘要

The erosion of liquid-metals from low-energy particle bombardment at 45° incidence has been measured for a combination of species and target materials in the ion-surface interaction experiment (IIAX) at the University of Illinois Urbana-Champaign. Measurements include bombardment of liquid Li, Sn-Li and Sn by H~+, D~+, He~+, and Li~+ particles at energies from 100 to 1000 eV and temperatures from 20 to 420℃. Lithium sputtering near and just above the melting point shows little change compared to room temperature, solid-Li yields. When lithium is sputtered, about 2/3 of the sputtered flux is in the charged state. Temperature-dependent sputtering results show enhanced (up to an order-of-magnitude increase) sputter yields as the temperature of the sample is increased about a factor of two of the melting point for all liquid-metals studied (e.g., Li, Sn-Li, and Sn). The enhancement is explained by two mechanisms: near-surface binding of eroded atoms and the nature of the near-surface recoil energy and angular distribution as a function of temperature. The Flowing Liquid Retention Experiment (FLIRE) measured particle transport by flowing liquid films when exposed to energetic particles. Measurements of retention coefficient were performed for helium ions implanted by an ion beam into flowing liquid lithium at 230℃ in the FLIRE facility. A linear dependence of the retention coefficient with implanted particle energy is found, given by the expression R = (5.3 +- 0.2) x 10~(-3) keV~(-1). The ion flux level did not have an effect for the flux level used in this work (~10~(13) cm~(-2) s~(-1)) and square root dependence with velocity is also observed, which is in agreement with existing particle transport models.
机译:在伊利诺伊大学香槟分校的离子表面相互作用实验(IIAX)中,已对物种和目标物质的组合测量了45°入射角下低能粒子轰击对液态金属的侵蚀。测量包括在100至1000 eV的能量和20至420℃的温度下用H〜+,D〜+,He〜+和Li〜+粒子轰击液态Li,Sn-Li和Sn。接近和刚好高于熔点的锂溅射与室温相比几乎没有变化,固态锂的产率也很高。当溅射锂时,约2/3的溅射通量处于充电状态。随温度变化的溅射结果表明,随着样品温度的升高,溅射产率提高(达到数量级的增加),对于所有研究的液态金属(例如Li,Sn- Li和Sn)。这种增强可以通过两种机制来解释:被腐蚀的原子的近表面结合以及近表面反冲能量和角度分布随温度变化的性质。流动液体保留实验(FLIRE)通过暴露于高能粒子时流动的液膜来测量粒子的传输。在FLIRE设备中,对离子束注入到流动的液态锂中的氦离子在230℃下的保留系数进行了测量。发现保留系数与注入的粒子能量之间的线性关系,由表达式R =(5.3 +-0.2)x 10〜(-3)keV〜(-1)给出。离子通量水平对本研究中使用的通量水平没有影响(〜10〜(13)cm〜(-2)s〜(-1)),并且还观察到了与速度的平方根相关性,即与现有的粒子传输模型达成协议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号