首页> 外文期刊>Fusion Engineering and Design >Progress in lattice Boltzmann methods for magnetohydrodynamic flows relevant to fusion applications
【24h】

Progress in lattice Boltzmann methods for magnetohydrodynamic flows relevant to fusion applications

机译:与融合应用相关的磁流体动量的格子玻尔兹曼方法的进展

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, an approach to simulating magnetohydrodynamic (MHD) flows based on the lattice Boltzmann method (LBM) is presented. The dynamics of the flow are simulated using a so-called multiple relaxation time (MRT) lattice Boltzmann equation (LBE), in which a source term is included for the Lorentz force. The evolution of the magnetic induction is represented by introducing a vector distribution function and then solving an appropriate lattice kinetic equation for this function. The solution of both distribution functions are obtained through a simple, explicit, and computationally efficient stream-and-collide procedure. The use of the MRT collision term enhances the numerical stability over that of a single relaxation time approach. To apply the methodology to solving practical problems, a new extrapolation-based method for imposing magnetic boundary conditions is introduced and a technique for simulating steady-state flows with low magnetic Prandtl number is developed. In order to resolve thin layers near the walls arising in the presence of high magnetic fields, a non-uniform gridding strategy is introduced through an interpolated-streaming step applied to both distribution functions. These advances are particularly important for applications in fusion engineering where liquid metal flows with low magnetic Prandtl numbers and high Hartmann numbers are introduced. A number of MHD benchmark problems, under various physical and geometrical conditions are presented, including 3-D MHD lid driven cavity flow, high Hartmann number flows and turbulent MHD flows, with good agreement with prior data. Due to the local nature of the method, the LBM also demonstrated excellent performance on parallel machines, with almost linear scaling up to 128 processors for a MHD flow problem.
机译:本文提出了一种基于晶格玻尔兹曼法(LBM)的模拟磁流体动力学(MHD)流的方法。使用所谓的多重弛豫时间(MRT)格子Boltzmann方程(LBE)模拟流的动力学,其中包括洛伦兹力的源项。通过引入矢量分布函数,然后为该函数求解适当的晶格动力学方程,来表示磁感应的演化。这两个分布函数的解决方案都是通过简单,显式和计算有效的流和冲突过程获得的。与单一弛豫时间方法相比,MRT碰撞项的使用增强了数值稳定性。为了将这种方法应用于解决实际问题,引入了一种新的基于外推的施加磁边界条件的方法,并开发了一种模拟低磁普朗特数的稳态流的技术。为了解决在存在高磁场的情况下在壁附近产生的薄层,通过对两个分布函数应用插值流步骤,引入了非均匀网格化策略。这些进展对于在融合工程中的应用特别重要,在融合工程中,引入了具有低磁Prandtl数和高Hartmann数的液态金属流。提出了在各种物理和几何条件下的许多MHD基准问题,包括3-D MHD盖驱动的腔流,高Hartmann数流和MHD湍流,与先前的数据有很好的一致性。由于该方法的本地性,LBM在并行计算机上也表现出出色的性能,几乎线性扩展了多达128个处理器,以解决MHD流问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号