首页> 外文期刊>Fusion Engineering and Design >Impact of nuclear irradiation on helium bubble nucleation at interfaces in liquid metals coupled to permeation through stainless steels
【24h】

Impact of nuclear irradiation on helium bubble nucleation at interfaces in liquid metals coupled to permeation through stainless steels

机译:核辐射对液态金属界面氦气气泡成核的影响,再加上不锈钢的渗透

获取原文
获取原文并翻译 | 示例
       

摘要

The impact of nucleating gas bubbles in the form of a dispersed gas phase on hydrogen isotope permeation at interfaces between liquid metals, like LIE, and structural materials, like stainless steel, has been studied. Liquid metal to structural material interfaces involving surfaces, may lower the nucleation barrier promoting bubble nucleation at active sites. Hence, hydrogen isotope absorption into gas bubbles modelling and control at interfaces may have a capital importance regarding design, operation and safety. He bubbles as a permeation barrier principle is analysed showing a significant impact on hydrogen isotope permeation, which may have a significant effect on liquid metal systems, e.g., tritium extraction systems. Liquid metals like LLE under nuclear irradiation in, e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Phenomena modelling is exposed and implemented in openFROM~® CFD tool for 0D to 3D simulations. Results for a 1D case show the impact of a He dispersed phase of nano bubbles on hydrogen isotopes permeation at an interface. In addition, a simple permeator simulation, consisting in a straight 3D pipe is exposed showing the effect of a He dispersed gas phase on hydrogen isotope permeation through different stainless steels. Results show the permeation reduction as a function of the interface area covered by He bubbles. Our work highlights the effect of gas bubble nucleation at interfaces and the importance of controlling these phenomena in nuclear technology applications.
机译:研究了以分散气相形式成核的气泡对液态金属(例如LIE)和结构材料(例如不锈钢)之间的氢同位素渗透的影响。液态金属与涉及表面的结构材料的界面可能会降低成核屏障,从而促进气泡在活性部位成核。因此,在界面上对氢进行同位素建模和控制的同位素吸收可能对设计,操作和安全性至关重要。分析了作为渗透阻挡原理的气泡,显示了对氢同位素渗透的显着影响,这可能对液态金属系统(例如tri萃取系统)产生显着影响。在核聚变反应堆的繁殖层等核辐射下的液态金属(如LLE)会生成tri,将其提取并作为燃料再循环。繁殖tri的同时,还会产生氦气,并且氦气会以纳米气泡的形式沉淀。现象建模已公开,并在openFROM〜®CFD工具中进行了0D至3D模拟。一维情况的结果表明,纳米气泡的He分散相对界面处氢同位素渗透的影响。此外,还展示了一个简单的渗透器模拟,该模拟由一条直的3D管组成,显示了He分散的气相对氢通过不同的不锈钢渗透的影响。结果显示渗透率的减少是He气泡覆盖的界面面积的函数。我们的工作强调了界面处气泡成核的影响以及在核技术应用中控制这些现象的重要性。

著录项

  • 来源
    《Fusion Engineering and Design》 |2014年第1期|16-24|共9页
  • 作者

    J. Fradera; S. Cuesta-Lopez;

  • 作者单位

    Advanced Materials, Nuclear Technology, Applied Nanotechnology, University of Burgos (UBU), Science and Technology Park, I+D+I Building, Room 63, Plaza Misael Banuelos, s, 09001 Burgos, Spain;

    Advanced Materials, Nuclear Technology, Applied Nanotechnology, University of Burgos (UBU), Science and Technology Park, I+D+I Building, Room 63, Plaza Misael Banuelos, s, 09001 Burgos, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:38:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号