首页> 外文期刊>Fusion Engineering and Design >The ITER interlock system
【24h】

The ITER interlock system

机译:ITER联锁系统

获取原文
获取原文并翻译 | 示例
       

摘要

ITER involves the integration of numerous sophisticated systems, many of which must operate reliably close to their performance limits in order to achieve the project's scientific goals. The teams responsible for exploiting the tokamak will require sufficient operational flexibility to explore a wide range of plasma scenarios within an operational framework that ensures that the integrity of the machine and safety of the environment and personnel are not compromised. The instrumentation and control (I&C) systems of ITER are divided into three separate tiers: the conventional I&C, the safety system and the interlock system. This paper focuses on the last of these. The operational experience from existing tokamaks and large superconducting machines, together with many specific aspects of the ITER facility, have been taken into account in the design of the ITER interlock system. This consists of a central element, the Central Interlock System, and several local elements, distributed across the various plant systems of the tokamak and referred to as Plant Interlock Systems. Each Plant Interlock System is connected to dedicated networks and communicates its status and interlock events to the Central Interlock System, which in turn sends the required interlock actions to the Plant Interlock Systems. The Central Interlock System is also responsible for communicating the status of each system to the operators in the main control room. These operators will use the Central Interlock System to perform functionalities such as overrides, resets of central interlock functions and configuration of Plant Interlock Systems. Three different types of architecture have been developed: a slow one, based on PLCs, for functions for which response times longer than 300 ms are adequate, a fast one, based on FPGAs, for functions which require response times beyond the capabilities of the PLC, and a hardwired one to synchronise all the systems involved in a fast discharge of the superconducting coils. The overall design of the Central Interlock System was presented and approved for manufacturing in a Final Design Review in 2016.
机译:ITER涉及众多复杂系统的集成,其中许多系统必须在接近其性能极限的情况下可靠运行,以实现项目的科学目标。负责开发托卡马克的团队将需要足够的操作灵活性,以在操作框架内探索各种等离子场景,以确保不损害机器的完整性以及环境和人员的安全。 ITER的仪表和控制(I&C)系统分为三个独立的层:常规I&C,安全系统和联锁系统。本文重点介绍了最后一个。 ITER联锁系统的设计考虑了现有托卡马克和大型超导机器的操作经验,以及ITER设施的许多特定方面。它由一个中央要素,中央互锁系统和几个局部要素组成,这些要素分布在托卡马克的各个工厂系统中,称为植物互锁系统。每个工厂互锁系统都连接到专用网络,并将其状态和互锁事件传达给中央互锁系统,而中央互锁系统又将所需的互锁动作发送到工厂互锁系统。中央联锁系统还负责将每个系统的状态传达给主控制室中的操作员。这些操作员将使用中央互锁系统执行功能,例如超控,中央互锁功能的重置以及工厂互锁系统的配置。已经开发出三种不同类型的架构:一种慢速的,基于PLC的功能,其响应时间超过300毫秒就足够了;一种快速的,快速的架构,基于FPGA,其功能要求响应时间超过PLC的能力,以及用于同步超导线圈快速放电所涉及的所有系统的硬连线系统。中央联锁系统的总体设计已在2016年的最终设计评审中提出并获准用于制造。

著录项

  • 来源
    《Fusion Engineering and Design》 |2018年第4期|104-108|共5页
  • 作者单位

    ITER Org, Route Vinon Sur Verdon,CS90 046, F-13067 St Paul Les Durance, France;

    CIEMAT, Av Complutense 40, Madrid 28040, Spain;

    Vitrociset, Via Tiburtina 1020, I-00156 Rome, Italy;

    ITER Org, Route Vinon Sur Verdon,CS90 046, F-13067 St Paul Les Durance, France;

    Iberdrola Ingn & Construcc, Av Manoteras 20, Madrid 28050, Spain;

    Vitrociset, Via Tiburtina 1020, I-00156 Rome, Italy;

    Iberdrola Ingn & Construcc, Av Manoteras 20, Madrid 28050, Spain;

    ITER Org, Route Vinon Sur Verdon,CS90 046, F-13067 St Paul Les Durance, France;

    Arkadia, 298 Ave club Hippique, F-13090 Aix En Provence, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Machine protection; Interlock; SIL; PLC; FPGA;

    机译:机器保护;互锁;SIL;PLC;FPGA;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号