首页> 外文期刊>Fusion Engineering and Design >The effect of surface oxides and grain sizes on the deuterium permeation behavior of niobium membranes
【24h】

The effect of surface oxides and grain sizes on the deuterium permeation behavior of niobium membranes

机译:表面氧化物和晶粒尺寸对铌膜氘渗透行为的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Group 5 transition metal niobium is considered as the promising hydrogen separation membrane material because of its theoretical highest atomic hydrogen permeability, good mechanical strength, low price and easy shaping. However, the permeability of hydrogen in the dense metal membrane is affected by surface oxides, gain sizes, defects and so on. In this paper, the effect of surface oxides and grain sizes on the permeation behavior of deuterium through niobium membranes is studied. The niobium membranes with micro- and nanocrystalline were first treated by mechanically or electro-polished to remove the surface oxides, and then the deuterium permeability tests were performed in the temperature range of 600-800 degrees C at the driving pressures of 50 kPa by gas-driven permeation method. Results showed that the niobium membrane with nanocrystalline and "clean" surface had the highest deuterium permeation than that with microcrystalline or unclean surface. More importantly, grain size and grain boundary had a greater influence on the deuterium permeation behavior of niobium membranes than the thin surface oxides. These results shed new light on the enhancement of hydrogen and its isotopes permeation in the niobium-based hydrogen separation membranes. Further work is to study the plasma-driven permeation of deuterium through nanocrystalline niobium membrane in order to obtain the super-permeation rate.
机译:第5族过渡金属铌由于其理论上最高的原子氢渗透性,良好的机械强度,低廉的价格和易于成型而被认为是有前途的氢分离膜材料。然而,氢在致密金属膜中的渗透性受表面氧化物,增益大小,缺陷等影响。本文研究了表面氧化物和晶粒尺寸对氘通过铌膜渗透行为的影响。首先通过机械抛光或电抛光处理具有微晶和纳米晶态的铌膜,以去除表面氧化物,然后在60-800摄氏度的温度范围内以50 kPa的气体驱动压力下进行氘渗透性测试。驱动的渗透方法。结果表明,与微晶或不清洁表面相比,具有纳米晶体和“清洁”表面的铌膜具有最高的氘渗透率。更重要的是,晶粒尺寸和晶界比薄的表面氧化物对铌膜的氘渗透行为有更大的影响。这些结果为增强氢及其在铌基氢分离膜中的同位素渗透提供了新的思路。进一步的工作是研究氘通过纳米晶铌膜的等离子体驱动的渗透,以获得超渗透速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号