首页> 外文期刊>Fusion Engineering and Design >Optimization of the geometric parameters of the EAST articulated maintenance arm (EAMA) with a collision-free workspace determination in EAST
【24h】

Optimization of the geometric parameters of the EAST articulated maintenance arm (EAMA) with a collision-free workspace determination in EAST

机译:通过确定EAST中的无碰撞工作空间来优化EAST铰接式维护臂(EAMA)的几何参数

获取原文
获取原文并翻译 | 示例
       

摘要

An EAST Articulated Maintenance Arm (EAMA), upgraded based on an articulated inspection arm (AIA), which was successfully operated in Tore Supra in 2008, was developed for the purpose of the inspection and maintenance of damaged internal components during plasma discharges without breaking the East Advanced Superconducting Tokamak (EAST) ultra-high vacuum condition. However, the coupling structure and high redundancy of the EAMA, due to the requirement of coverage ratio and the limitation of the EAST environment, produces a limited accuracy in positioning control. Therefore, the optimal design of the geometric parameters plays a vital role in the EAMA's performance. In this paper, the main characteristics of the EAMA system are investigated to formulate the optimization into a multi-objective problem. Furthermore, an approach based on the Monte Carlo method, integrated with a dedicated collision detection algorithm in the EAST environment, is elaborated on, which is utilized to calculate the collision-free workspace of the EAMA. With the knowledge of the workspace, the coverage ratio is obtained by a progressive meshing technique. Finally, several groups of geometric parameters are sampled to calculate the corresponding value of the objective functions, and the optimized combination of the geometric parameters is obtained by comparing the results.
机译:开发了EAST铰接式维护臂(EAMA),该系统是在2008年在Tore Supra成功运行的基础上,升级为铰接式检查臂(AIA)的目的,目的是在等离子体放电过程中检查和维护损坏的内部组件,而不会损坏东部先进的超导托卡马克(EAST)超高真空条件。然而,由于覆盖率的要求和EAST环境的限制,EAMA的耦合结构和高冗余性在定位控制中产生了有限的精度。因此,几何参数的优化设计对EAMA的性能起着至关重要的作用。本文研究了EAMA系统的主要特征,以将优化公式化为一个多目标问题。此外,阐述了一种基于蒙特卡洛方法的方法,该方法与EAST环境中的专用碰撞检测算法集成在一起,用于计算EAMA的无碰撞工作空间。有了工作空间的知识,可以通过渐进式网格划分技术获得覆盖率。最后,对几组几何参数进行采样以计算目标函数的对应值,并通过比较结果获得几何参数的优化组合。

著录项

  • 来源
    《Fusion Engineering and Design》 |2019年第2期|155-162|共8页
  • 作者单位

    Chinese Acad Sci, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China|Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China|Lappeenranta Univ Technol, Lappeenranta, Finland;

    Chinese Acad Sci, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China;

    Chinese Acad Sci, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China;

    Lappeenranta Univ Technol, Lappeenranta, Finland;

    Chinese Acad Sci, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China|Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China;

    Chinese Acad Sci, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China|French Atom Energy & alternat Energy Commiss, Paris, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    EAMA; Geometric parameters; Coverage ratio; Monte carlo method; Workspace; Collision detection;

    机译:EAMA;几何参数;覆盖率;蒙特卡洛法;工作空间;碰撞检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号