...
首页> 外文期刊>Fusion Engineering and Design >Application of 3D View Factor method for heat fluxes deposition on ITER Cryostat Thermal Shield
【24h】

Application of 3D View Factor method for heat fluxes deposition on ITER Cryostat Thermal Shield

机译:3D视图因数法在ITER低温恒温器隔热板上热流沉积中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

The role of the ITER Tokamak thermal shield system is to minimize heat loads transferred from the hot tokamak components to the cooled superconducting components. The system consists of two single wall structures fabricated from 304L-(N) stainless steel. Both structures are actively cooled with pipes permanently welded to the structure and filled with pressurized helium gas at 80K. One structure is the Vacuum Vessel Thermal Shield (VVTS), which protects magnet components from Vacuum Vessel (VV) radiation. The second structure is the Cryostat Thermal Shield (CTS), which protects magnet components from in-Cryostat components' radiations such as the Cryostat (at 293K), the VV Ports (at 393K), and the water cooling system (at 350K).In 2012, thermal analyses were performed in order to verify the thermal integrity of the ITER CTS 2010 baseline design. The heat loads to the CTS were estimated according to load specification as a homogeneous distribution based on cryostat temperature at 293K. Following this study, in order to determine a more realistic heat load distribution on the CTS panels, we performed a detailed 3D analysis of the Cryostat-CTS interspace.This paper describes the methodology used, based on view factors combined with Kirchhoffs law, to define the heat flux deposition on the CTS from its surrounding components via radiation. The previous thermo-hydraulic analysis models have been adapted using this method to define the temperature distribution and total power transmitted to the magnets. Despite an increase of 30% of the CTS total power deposition on the superconducting components in comparison to the previous analysis, we found the total heat power deposition onto the superconducting components at 4K to be within the limit of the design requirement (P = 1900W).
机译:ITER托卡马克隔热屏系统的作用是最大程度地减少从热托卡马克组件传递到冷却的超导组件的热负荷。该系统由两个由304L-(N)不锈钢制成的单壁结构组成。两种结构均通过永久焊接到该结构的管道进行主动冷却,并充满80K的加压氦气。一种结构是真空容器热屏蔽罩(VVTS),可保护磁体组件免受真空容器(VV)辐射。第二种结构是低温恒温器热屏蔽(CTS),它可以保护磁体组件免受低温恒温器内部组件的辐射,例如低温恒温器(293K),VV端口(393K)和水冷系统(350K)。在2012年,进行了热分析,以验证ITER CTS 2010基准设计的热完整性。根据负荷规格,根据293K低温恒温器的温度,将CTS的热负荷估算为均匀分布。这项研究之后,为了确定CTS面板上更真实的热负荷分布,我们对Cryostat-CTS间隙进行了详细的3D分析。本文基于视图因子和基尔霍夫斯定律描述了用于定义的方法热通量从其周围的组件通过辐射沉积在CTS上。以前的热工水力分析模型已经使用此方法进行了修改,以定义温度分布和传输到磁体的总功率。尽管与以前的分析相比,超导组件上的CTS总功率沉积增加了30%,但我们发现在4K时沉积在超导组件上的总热功率在设计要求的范围内(P <= 1900W )。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号