...
首页> 外文期刊>Fuel >Non-catalytic biodiesel process with adsorption-based refining
【24h】

Non-catalytic biodiesel process with adsorption-based refining

机译:基于吸附精制的非催化生物柴油工艺

获取原文
获取原文并翻译 | 示例
           

摘要

Different feedstocks of varying acidity ranks and water contents were subjected to a series of discontinuous steps that simulated a biodiesel production process. The three steps comprised: (i) the non-catalytic transesterification with supercritical methanol at 280 ℃; (ii) the distillation of the unreacted methanol, water and volatile products: and (iii) the adsorption of the impurities with adequate adsorbents. Refined soy oil. chicken oil and waste cooking oil were subjected to the same simple procedure. The process produced biodiesel complying with the water, acid, glycerides and methyl esters content specifications of the EN 14214 standard. Biodiesel production by the reaction of oils in supercritical methanol at 280 ℃ and methanol-to-oil molar ratios of 15 and 20 produced amounts of glycerol as small as 0.02%. This simplified the subsequent refining of the biodiesel and is considered an advantage over the classic alkali-catalyzed process (that produces 10% of glycerol by-product) because washing steps can be spared. The contents of methyl esters, water and free fatty acids showed a volcano pattern when plotted as a function of the reaction time. In the case of the free fatty acids this was attributed to the initial reaction of water and triglycerides to form acids and glycerol that increased the acidity of the product mixture. At longer reaction times these acids were likely transformed into methyl esters or were decarboxylated to hydrocarbons and CO_2. Water formation was attributed to glycerol decomposition and esterification of free fatty acids. The design of a simple process for biodiesel production using a single reaction step with negligible glycerol production and an adsorption-based refining step was thus studied. A possible scheme integrating reaction, methanol recycling, biodiesel purification and heat recovery was discussed. Advantages and disadvantages of process units were analyzed on terms of operating cost and simplicity.
机译:不同酸度等级和水含量的不同原料要经过一系列不连续的步骤,这些步骤模拟了生物柴油的生产过程。这三个步骤包括:(i)在280℃与超临界甲醇进行非催化酯交换反应; (ii)蒸馏未反应的甲醇,水和挥发性产物;和(iii)用适当的吸附剂吸附杂质。精制豆油。鸡油和废食用油都经过相同的简单程序。该过程生产的生物柴油符合EN 14214标准中的水,酸,甘油酯和甲酯含量标准。通过在280℃下的油在超临界甲醇中反应以及甲醇与油的摩尔比为15和20进行反应来生产生物柴油,所产生的甘油量小至0.02%。这简化了生物柴油的后续精制,并被认为比传统的碱催化工艺(产生10%的甘油副产物)具有优势,因为可以省去洗涤步骤。当将其绘制为反应时间的函数时,甲酯,水和游离脂肪酸的含量显示出火山形式。在游离脂肪酸的情况下,这归因于水和甘油三酸酯的初始反应形成酸和甘油,这增加了产物混合物的酸度。在较长的反应时间下,这些酸可能会转化为甲酯或被羧化为烃和CO_2。水的形成归因于甘油的分解和游离脂肪酸的酯化。因此,研究了一种简单的生物柴油生产工艺的设计,该工艺使用单一的可忽略不计的甘油生产反应步骤和基于吸附的精制步骤。讨论了将反应,甲醇循环利用,生物柴油纯化和热回收相结合的可行方案。从操作成本和简便性方面分析了处理单元的优缺点。

著录项

  • 来源
    《Fuel》 |2011年第3期|p.1188-1196|共9页
  • 作者单位

    Instituto de Investigaciones en Catalisisy Petroquimica, INCAPE (FIQ-UNL CONICET), Santiago del Estero 2654, 3000 Santa Fe. Argentina;

    Instituto de Investigaciones en Catalisisy Petroquimica, INCAPE (FIQ-UNL CONICET), Santiago del Estero 2654, 3000 Santa Fe. Argentina;

    Instituto de Investigaciones en Catalisisy Petroquimica, INCAPE (FIQ-UNL CONICET), Santiago del Estero 2654, 3000 Santa Fe. Argentina;

    Instituto de Investigaciones en Catalisisy Petroquimica, INCAPE (FIQ-UNL CONICET), Santiago del Estero 2654, 3000 Santa Fe. Argentina;

    Instituto de Investigaciones en Catalisisy Petroquimica, INCAPE (FIQ-UNL CONICET), Santiago del Estero 2654, 3000 Santa Fe. Argentina;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    biodiesel; supercritical methanol; adsorbents;

    机译:生物柴油;超临界甲醇;吸附剂;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号