首页> 外文期刊>Fuel >Laminar burning velocity measurements using the Heat Flux method and numerical predictions of iso-octane/ethanol blends for different preheat temperatures
【24h】

Laminar burning velocity measurements using the Heat Flux method and numerical predictions of iso-octane/ethanol blends for different preheat temperatures

机译:使用热通量方法的层流燃烧速度测量以及不同预热温度下异辛烷/乙醇混合物的数值预测

获取原文
获取原文并翻译 | 示例
           

摘要

The substitution of gasoline with bio-ethanol is an intended way to reduce the climate impact of the traffic sector. To extend the knowledge of fundamental flame properties of ethanol/iso-octane flames and improve the numerical predictions for the effect of ethanol blending in internal combustion engines, measurements of the laminar burning velocity of established blend ratios of ethanol and iso-octane were carried out and compared to existing numerical mechanisms. The measurements were carried out with the Heat Flux burner, with thermocouples of type E at the burner plate, which was adapted with an evaporation unit based on direct vaporization to investigate the liquid fuels. The preheating temperature ranges from 298 K to 373 K and the pressure is atmospheric. First measurements of the laminar burning velocity of ethanol/air and iso-octane/air flames were carried out for validating the system. A good agreement with available literature data could be achieved for the investigated equivalence ratios from 0.7 to 1.4. Furthermore laminar burning velocities of different iso-octane/ethanol/air blends, namely E10, E24, E40 and E85, are presented. Through variation of the preheating temperatures (298 K, 323 K, 348 K and 373 K) the temperature dependency could be analyzed. The uncertainty analysis of the measurements has been revealed. Numerical simulations were carried out using different chemical mechanisms for ethanol/air flames, iso-octane/air flames as well as various fuel blends and preheating temperatures and are compared to the experimental data. The agreement is evaluated through a classification of the discrepancy between both.
机译:用生物乙醇代替汽油是减少交通部门对气候影响的一种预期方法。为了扩展对乙醇/异辛烷火焰的基本火焰特性的了解并改善对乙醇在内燃机中混合效果的数值预测,对已建立的乙醇与异辛烷混合比的层流燃烧速度进行了测量并与现有的数值机制进行比较。测量是用热通量燃烧器进行的,燃烧器板上装有E型热电偶,该热电偶装有基于直接汽化的蒸发单元,用于研究液体燃料。预热温度为298 K至373 K,压力为大气压。为了验证系统,对乙醇/空气和异辛烷/空气火焰的层流燃烧速度进行了首次测量。对于0.7到1.4的当量比,可以与现有文献数据很好地吻合。此外,还提出了不同的异辛烷/乙醇/空气混合物的层流燃烧速度,即E10,E24,E40和E85。通过改变预热温度(298 K,323 K,348 K和373 K),可以分析温度依赖性。测量的不确定性分析已被揭示。使用不同的化学机理对乙醇/空气火焰,异辛烷/空气火焰以及各种燃料混合物和预热温度进行了数值模拟,并将其与实验数据进行了比较。通过对两者之间的差异进行分类来评估协议。

著录项

  • 来源
    《Fuel》 |2015年第15期|10-16|共7页
  • 作者单位

    TU Bergakademie Freiberg, Institute of Thermal Engineering, Gas and Heat Technology, Gustav-Zeuner-Str. 7, Freiberg, Germany;

    TU Bergakademie Freiberg, Institute of Energy Process Engineering and Chemical Engineering, Numerical Thermo-Fluid Dynamics, Freiberg, Germany;

    TU Bergakademie Freiberg, Institute of Thermal Engineering, Gas and Heat Technology, Gustav-Zeuner-Str. 7, Freiberg, Germany;

    aDROP Feuchtemesstechnik GmbH, Kurgartenstrasse 59, 90762 Fuerth, Germany;

    TU Bergakademie Freiberg, Institute of Energy Process Engineering and Chemical Engineering, Numerical Thermo-Fluid Dynamics, Freiberg, Germany;

    Karlsruhe Institute of Technology, Engler-Bunte-Institute, Combustion Technology, Karlsruhe, Germany,TU Bergakademie Freiberg, Institute of Thermal Engineering, Gas and Heat Technology, Gustav-Zeuner-Str. 7, Freiberg, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Iso-octane/ethanol blends; Liquid fuels; Laminar burning velocity; Heat Flux burner;

    机译:异辛烷/乙醇共混物;液体燃料;层流燃烧速度热流燃烧器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号