首页> 外文期刊>Fuel >Numerical analysis on transient behaviors of slag layer in an entrained-flow coal gasifier
【24h】

Numerical analysis on transient behaviors of slag layer in an entrained-flow coal gasifier

机译:气流床气化炉渣层瞬态行为的数值分析

获取原文
获取原文并翻译 | 示例
       

摘要

In an entrained-flow coal gasifier with water-cooled walls, it is important to maintain an appropriate range of slag thickness on the wall for protecting the refractory and preventing blockage at the slag tap. Owing to the difficulty in measurement within the gasifier, the heat absorption on the wall and downstream syngas composition are monitored as indicators of slag thickness and gas temperature. However, there is a certain delay between these parameters that can be highlighted by the dynamic modeling of slag behaviors on the wall and reactions/flow in the gas regime. In this study, a new dynamic model for the slag layer was developed, which solves for the energy, heat transfer, and flow of the solid and liquid slag layers including the transformation between the two phases. The model was applied to a commercial gasifier varying operating parameters, and the transient behaviors of the slag layers were analyzed focusing on the thickness at the slag tap and the heat absorption on the wall. When the operating conditions changed abruptly, the slag layer required 10 min or longer to reach the new steady state. The thinning of the slag layer was faster than its thickening. In addition, the response of heat absorption was significantly faster than that for the slag thickness at the slag tap. The characteristic times of the slag layer were shorter with changes in gas temperature than with changes in the mass rate and temperature of the slag deposition. During the transient states, the temperature profile within the liquid slag became non-linear, which suggests that existing models assuming a linear temperature profile may not be appropriate for dynamic simulations.(C) 2017 Elsevier Ltd. All rights reserved.
机译:在具有水冷壁的气流床煤气化炉中,重要的是在壁上保持适当的炉渣厚度范围,以保护耐火材料并防止炉渣出料口堵塞。由于气化炉内测量的困难,对壁和下游合成气成分的热吸收进行了监测,以作为炉渣厚度和气体温度的指标。但是,这些参数之间存在一定的延迟,这可以通过壁上炉渣行为和气体状态下的反应/流量的动态建模来突出显示。在这项研究中,为渣层开发了一个新的动力学模型,该模型解决了包括两相之间的转化在内的固渣层和液态渣层的能量,传热和流动。该模型被应用于改变操作参数的商业气化炉,并着重于渣口处的厚度和壁上的吸热来分析渣层的瞬态行为。当操作条件突然改变时,渣层需要10分钟或更长时间才能达到新的稳态。炉渣层的变薄快于其增厚。此外,吸热的响应明显快于出渣口对渣厚度的响应。随着气体温度的变化,炉渣层的特征时间比炉渣沉积的质量速率和温度的变化要短。在过渡状态期间,液态炉渣内的温度曲线变为非线性,这表明假设线性温度曲线的现有模型可能不适用于动态模拟。(C)2017 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Fuel》 |2017年第may15期|532-542|共11页
  • 作者单位

    Sungkyunkwan Univ, Sch Mech Engn, Suwon 16419, South Korea;

    Sungkyunkwan Univ, Sch Mech Engn, Suwon 16419, South Korea;

    Sungkyunkwan Univ, Sch Mech Engn, Suwon 16419, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ash deposition; Coal gasification; Entrained gasifier; Numerical model; Slag layer;

    机译:灰分沉积;煤气化;夹带气化炉;数值模型;渣层;
  • 入库时间 2022-08-18 00:15:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号