...
首页> 外文期刊>Fuel >Why shale permeability changes under variable effective stresses: New insights
【24h】

Why shale permeability changes under variable effective stresses: New insights

机译:为什么页岩渗透率在有效应力变化下变化:新见解

获取原文
获取原文并翻译 | 示例
           

摘要

AbstractExperimental measurements of shale permeability are normally conducted under conditions of constant effective stresses. Based on the theory of poroelasticity, shale permeability in non-sorbing media is determined by the effective stress alone and remains unchanged if the effective stress does not change. This theoretical conclusion contradicts some experimental observations in sorbing media. These enigmatic phenomena are analyzed through a model accommodating gas slippage. This approach can explain why shale permeability is significant at low gas pressure but does not explain the contradiction with poromechanics. In this work, we develop and apply an alternative approach to resolve this dilemma. The model comprises flow within a nanotube capillary embedded within the shale matrix (discrete approach) and allows the evolution of shale permeability to be followed during the processes of shale gas flow. In the formulation, we define four strains: global strain of the shale, fracture-local strain, matrix-global strain, and pore-local strain. Shale permeability is defined as a function of these strains that are, in turn, a consequence of effective stress transfer between the matrix and the fracture systems. This behavior is regulated by the differential compliance of the various components and by gas diffusion from the fracture system to the matrix. We use the strain evolution to define how shale permeability changes with time or gas pressure in the matrix system. We apply the new model to generate a series of shale permeability profiles. These profiles are consistent with experimental observations reported in the literature. Through this study, we demonstrate that the experimental observations can indeed be explained through the inclusion of explicit interactions between shale microstructures and gas transport processes.
机译: 摘要 页岩渗透率的实验测量通常是在恒定有效应力的条件下进行的。根据孔隙弹性理论,非吸附介质中的页岩渗透率仅由有效应力决定,如果有效应力不变,则保持不变。该理论结论与吸附介质中的一些实验观察结果相矛盾。通过包含气体滑移的模型来分析这些神秘现象。这种方法可以解释为什么在低气压下页岩渗透性显着,但不能解释与孔隙力学的矛盾。在这项工作中,我们开发并应用了替代方法来解决这一难题。该模型包括嵌入页岩基质内的纳米管毛细管内的流动(离散方法),并允许在页岩气流动过程中跟踪页岩渗透率的演变。在配方中,我们定义了四个应变:页岩的整体应变,裂缝局部应变,基质整体应变和孔隙局部应变。页岩渗透率定义为这些应变的函数,而这些应变又是基质与裂缝系统之间有效应力传递的结果。这种行为是由各种组分的差异顺应性以及气体从裂缝系统到基质的扩散所调节的。我们使用应变演化来定义页岩渗透率如何随时间或基质系统中的气压变化。我们应用新模型来生成一系列页岩渗透率剖面。这些概况与文献中报道的实验观察结果一致。通过这项研究,我们证明了通过包含页岩微结构与气体传输过程之间的显式相互作用可以确实解释实验观察结果。

著录项

  • 来源
    《Fuel》 |2018年第1期|55-71|共17页
  • 作者单位

    State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences,University of Chinese Academy of Sciences;

    IRC for Unconventional Geomechanics, Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University,School of Mechanical and Chemical Engineering, The University of Western Australia;

    State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences;

    State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences,Key Laboratory of Tectonics and Petroleum Resources, Faculty of Earth Resources, China University of Geosciences;

    Department of Energy and Mineral Engineering, G3 Center and Energy Institute, The Pennsylvania State University;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Shale apparent permeability; Constant effective stress; Deformation evolution; Gas diffusion;

    机译:页岩表观渗透率;恒定有效应力;变形演化;气体扩散;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号