首页> 外文期刊>Fuel >Prediction of methane adsorption in shale: Classical models and machine learning based models
【24h】

Prediction of methane adsorption in shale: Classical models and machine learning based models

机译:页岩中甲烷吸附预测:古典模型与机器学习模型

获取原文
获取原文并翻译 | 示例
           

摘要

Shale gas contributes significantly to current global energy consumption, and an accurate estimation of geological gas-in-place (GIP) determines an optimal production plan. As the dominant form of storage, adsorbed gas in shale formation is of primary importance to be assessed. This paper summarizes adsorption models into traditional pressure/density dependent isothermal models, pressure and temperature unified model, and machine learning based models. Using a comprehensive experimental dataset, these models are applied to simulate shale gas adsorption under in-situ conditions. Results show that the modified Dubinin-Radushkevich (DR) model provides the optimal performance in traditional isothermal models. Pressure and temperature unified models make a breakthrough in isothermal conditions and can extrapolate the predictions beyond test ranges of temperature. Well-trained machine learning models not only break the limit of the isothermal condition and types of shale formation, but can also provide reasonable extrapolations beyond test ranges of temperature, total organic carbon (TOC), and moisture. Four popular machine learning algorithms are used, which include artificial neural network (ANN), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGBoost). The XGBoost model is found to provide the best results for predicting shale gas adsorption, and it can be conveniently updated for broader applications with more available data. Overall, this paper demonstrates the capability of machine learning for prediction of shale gas adsorption, and the well-trained model can potentially be built into a large numerical frame to optimize production curves of shale gas.
机译:页岩气显着贡献目前的全球能耗,准确估计地质燃气(GIP)决定了最佳的生产计划。作为储存的主要形式,页岩形成的吸附气体是主要的重视。本文总结了吸附模型进入传统压力/密度依赖等温模型,压力和温度统一模型以及基于机器学习的模型。使用全面的实验数据集,应用这些型号以在原位条件下模拟页岩气吸附。结果表明,改进的Dubinin-Radushkevich(DR)模型在传统等温模型中提供了最佳性能。压力和温度统一模型在等温条件下进行突破,可以将超出测试范围的预测推断出来的预测。训练有素的机器学习模型不仅破坏了等温条件和页岩形成的类型,而且还可以提供超出测试范围的合理外推,总有机碳(TOC)和水分。使用四种流行的机器学习算法,包括人工神经网络(ANN),随机森林(RF),支持向量机(SVM)和极端梯度升压(XGBoost)。发现XGBoost模型提供了预测页岩气吸附的最佳效果,并且可以方便地更新更广泛的应用程序,具有更多可用数据。总体而言,本文展示了机器学习以预测页岩气吸附的能力,训练有素的模型可能是一个大型数值框架,以优化页岩气的生产曲线。

著录项

  • 来源
    《Fuel》 |2020年第15期|118358.1-118358.12|共12页
  • 作者单位

    Los Alamos Natl Lab Earth & Environm Sci Div Los Alamos NM USA;

    Univ Queensland Sch Chem Engn Brisbane Qld Australia;

    Univ Houston Dept Earth & Atmospher Sci Houston TX USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Shale gas; Adsorption model; Classical model; Machine learning; XGBoost;

    机译:页岩气;吸附模型;古典模型;机器学习;XGBoost;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号