首页> 外文期刊>Fuel >Machine learning for predictive coal combustion CFD simulations-From detailed kinetics to HDMR Reduced-Order models
【24h】

Machine learning for predictive coal combustion CFD simulations-From detailed kinetics to HDMR Reduced-Order models

机译:用于预测煤燃烧CFD模拟的机器学习 - 从详细的动力学到HDMR倒计级模型

获取原文
获取原文并翻译 | 示例
       

摘要

Because of the complex multiscale turbulence-chemistry-particle (TCP) interactions in solid fuel-supplied combustion systems, developing predictive models remains a formidable challenge even with the improved accuracy of the large eddy simulation (LES) approach. There are three main types of LES-based coal combustion model: a) those for coal particle dynamics, b) those for subgrid TCP interactions, and c) those for solid fuel kinetics. The third type is the focus of this work, as several recent studies have shown that the accuracy of kinetic models used to describe the solid-gas phase kinetic conversion process is of primary importance when it comes to predictability. Therefore, the implementation of detailed solid fuel kinetics is desired when simulating coal combustion However, it is far from being feasible to directly couple detailed kinetics in large-scale LESs of power plants. To overcome the challenge, a reduced-order model based on Machine Learning (ML) is developed in this work to accurately represent the solid-gas phase conversion process at an acceptable computational cost. The ML-based model is trained with databases from the simulations of single-particle combustion with detailed kinetics over a wide range of operating conditions extracted from a novel gas-assisted coal combustion chamber, and then validated by the test databases and unsteady particle trajectories from the LES of the gas-assisted coal combustion chamber. The ML-based model can accurately predict different phases of coal particle combustion at a reduced computational cost. The results indicate that the use of ML-based approaches is promising for implementing detailed solid fuel kinetics in the context of LES.
机译:由于复杂的多尺度湍流 - 化学粒子(TCP)相互作用,即使在大涡模拟(LES)方法的提高精度提高的准确性,开发的预测模型也仍然是一个强大的挑战。基于LES的煤炭燃烧模型有三种主要类型:a)煤粒子动力学,b)用于胚层TCP相互作用的那些,以及C)固体燃料动力学的燃料动力学。第三种类型是这项工作的重点,因为最近的几项研究表明,用于描述固体气相动力学转换过程的动力学模型的准确性在涉及到可预测性时主要重要。因此,当模拟煤燃烧时,需要实施详细的固体燃料动力学,然而,在大规模更少的发电厂中直接耦合详细的动力学,它远远不可行。为了克服挑战,在这项工作中开发了一种基于机器学习(ML)的减少阶模型,以准确地以可接受的计算成本准确地代表固体气相转换过程。基于ML的模型通过从新型气体辅助煤燃烧室提取的各种操作条件的单颗粒燃烧模拟的数据库进行培训,然后由测试数据库和非定常粒子轨迹验证气体辅助煤燃烧室的LES。基于ML的模型可以以降低的计算成本准确地预测煤颗粒燃烧的不同相位。结果表明,在LES的背景下,使用基于ML的方法的使用是有望在LES的背景下实施详细的固体燃料动力学。

著录项

  • 来源
    《Fuel》 |2020年第15期|117720.1-117720.12|共12页
  • 作者单位

    Tech Univ Darmstadt Inst Simulat React Thermofluid Syst STFS Otto Berndt Str 2 Darmstadt 64287 Germany;

    Tech Univ Darmstadt Inst Energy & Power Plant Technol EKT Otto Berndt Str 3 Darmstadt 64287 Germany;

    Tech Univ Darmstadt Inst Simulat React Thermofluid Syst STFS Otto Berndt Str 2 Darmstadt 64287 Germany;

    Tech Univ Darmstadt Inst Energy & Power Plant Technol EKT Otto Berndt Str 3 Darmstadt 64287 Germany;

    Tech Univ Darmstadt Inst Simulat React Thermofluid Syst STFS Otto Berndt Str 2 Darmstadt 64287 Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Coal combustion; Solid fuel kinetics; Machine Learning; LES;

    机译:煤燃烧;固体燃料动力学;机器学习;LES;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号