...
首页> 外文期刊>Fuel >Oxyfuel combustion and reactants preheating to enhance turbulent flame stabilization of low calorific blast furnace gas
【24h】

Oxyfuel combustion and reactants preheating to enhance turbulent flame stabilization of low calorific blast furnace gas

机译:氧气燃烧和预热反应物,提高低热炉气体的湍流火焰稳定

获取原文
获取原文并翻译 | 示例

摘要

The need for the reduction of the environmental impact of combustion systems in terms of pollutant emissions and preservation of non-renewable resources forces to consider the improvement of energy efficiency and to turn towards alternative fuels in industrial combustion furnaces. However, their use may be an issue because of their low calorific value (LCV) compared to traditional natural gas (NG). The present work considers the combination of oxyfuel combustion with fuel and/or oxygen preheating in order to increase thermal efficiency by heat recovery and enhance LCV oxyfuel flame stabilization, without using a supporting fuel as NG. The study is focused on Blast Furnace Gas (BFG) which has one-tenth the heating value of NG.This assessment starts with thermochemical calculations of major flame properties at several reactant temperatures. Two fundamental flame configurations are simulated: a fully premixed 1D flame for the determination of adiabatic temperature, thermal thickness and laminar burning velocity, and a counter-flow diffusion flame for the determination of extinction strain rates. The results show that significant enhancement of oxyfuel flame properties can be obtained thanks to the preheating of BFG and oxygen. The effect of such preheating is then experimentally studied at laboratory-scale (25 kW) using a tri-coaxial burner generating a non-premixed turbulent BFG-O2 flame. The burner geometry consists of an annular BFG injection surrounded by an inner central oxygen injection and an external annular oxygen injection. Based on a critical Damkohler number, a theoretical analysis of the stabilization limit for a turbulent diffusion BFG-O-2 flame with preheated reactant is described and used as a criterion to calculate the burner dimensions. Detailed flame characteristics are investigated from measurements of flue gas emissions and OH* chemiluminescence imaging. From these, the analysis of flame stability diagrams as function of reactant velocities, thermal power, oxygen distribution and preheating temperatures points out the limits of flame stability and the stable combustion regimes achieved at the different operational conditions. Regarding the emissions, very low levels of pollutant emissions such as CO and NOx are achieved in most cases. Further analysis of the results shows that transitions between the various types of flames are controlled by a critical convection velocity in the BFG - oxygen mixing layer. This is quantified from the measurements and matches with the theoretical prediction.Complementary large-scale experiments are performed on a semi-industrial facility, with identical burner geometry, scaled-up to 180 kW using the velocity criterion. The flames show similar structures as obtained at laboratory scale, demonstrating the benefit of preheated oxyfuel combustion for the stabilization of LCV flames. These results validate the analysis of the physical phenomena controlling the limit of stability of BFG oxyfuel flames, as well as the burner design strategy of preheated oxyfuel combustion adapted to low calorific fuels, and the scale-up criteria used for this particular case.
机译:需要减少燃烧系统对污染物排放的环境影响和不可再生资源力量的保护,以考虑提高能源效率,并转向工业燃烧炉中的替代燃料。然而,与传统天然气(NG)相比,它们的使用可能是一个问题,因为它们的低热值(LCV)。目前的作品考虑了氧荷燃烧与燃料和/或氧气预热的组合,以通过热回收率提高热效率,并增强LCV氧荷燃火焰稳定,而不使用支撑燃料作为NG。该研究专注于高炉气体(BFG),其具有NG的加热值。该评估以多种反应物温度的主要火焰性质的热化学计算开始。模拟两个基本火焰配置:用于确定绝热温度,热厚度和层状燃烧速度的完全预混的1D火焰,以及用于确定消光应变率的反流扩散火焰。结果表明,由于BFG和氧气的预热,可以获得显着提高氧气燃烧性。然后使用产生非预混湍流BFG-O2火焰的三轴燃烧器在实验室型(25kW)上实验研究这种预热的效果。燃烧器几何形状由内部中央氧注射和外部环形氧注射围绕的环形BFG注射组成。基于临界达摩尔号,描述了具有预热反应物的湍流扩散BFG-O-2火焰的稳定极限的理论分析,并用作计算燃烧器尺寸的标准。从烟道气排放测量和OH *化学发光成像进行了详细的火焰特性。由此,对火焰稳定性图的分析作为反应物速度,热功率,氧气分布和预热温度的功能指出了火焰稳定性的限制,并且在不同的操作条件下实现的稳定燃烧制度。关于排放,在大多数情况下,在大多数情况下实现了非常低的污染物排放量,如CO和NOx。结果的进一步分析表明,各种类型的火焰之间的转变由BFG - 氧气混合层中的临界对流速度控制。这是从测量和理论上预测的匹配量化的,在半工业设施上进行了大规模实验,使用相同的燃烧器几何形状,使用速度标准缩放到180kW。火焰显示在实验室规模中获得的类似结构,展示了预热氧荷燃烧对LCV火焰的稳定的益处。这些结果验证了控制BFG Oxyfuel火焰稳定性极限的物理现象的分析,以及适用于低热量燃料的预热氧燃料燃烧的燃烧器设计策略,以及用于这种特殊情况的扩大标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号