首页> 外文期刊>Fuel >Oxyfuel combustion and reactants preheating to enhance turbulent flame stabilization of low calorific blast furnace gas
【24h】

Oxyfuel combustion and reactants preheating to enhance turbulent flame stabilization of low calorific blast furnace gas

机译:含氧燃料燃烧和反应物预热以增强低热值高炉煤气的湍流火焰稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

The need for the reduction of the environmental impact of combustion systems in terms of pollutant emissions and preservation of non-renewable resources forces to consider the improvement of energy efficiency and to turn towards alternative fuels in industrial combustion furnaces. However, their use may be an issue because of their low calorific value (LCV) compared to traditional natural gas (NG). The present work considers the combination of oxyfuel combustion with fuel and/or oxygen preheating in order to increase thermal efficiency by heat recovery and enhance LCV oxyfuel flame stabilization, without using a supporting fuel as NG. The study is focused on Blast Furnace Gas (BFG) which has one-tenth the heating value of NG.This assessment starts with thermochemical calculations of major flame properties at several reactant temperatures. Two fundamental flame configurations are simulated: a fully premixed 1D flame for the determination of adiabatic temperature, thermal thickness and laminar burning velocity, and a counter-flow diffusion flame for the determination of extinction strain rates. The results show that significant enhancement of oxyfuel flame properties can be obtained thanks to the preheating of BFG and oxygen. The effect of such preheating is then experimentally studied at laboratory-scale (25 kW) using a tri-coaxial burner generating a non-premixed turbulent BFG-O2 flame. The burner geometry consists of an annular BFG injection surrounded by an inner central oxygen injection and an external annular oxygen injection. Based on a critical Damkohler number, a theoretical analysis of the stabilization limit for a turbulent diffusion BFG-O-2 flame with preheated reactant is described and used as a criterion to calculate the burner dimensions. Detailed flame characteristics are investigated from measurements of flue gas emissions and OH* chemiluminescence imaging. From these, the analysis of flame stability diagrams as function of reactant velocities, thermal power, oxygen distribution and preheating temperatures points out the limits of flame stability and the stable combustion regimes achieved at the different operational conditions. Regarding the emissions, very low levels of pollutant emissions such as CO and NOx are achieved in most cases. Further analysis of the results shows that transitions between the various types of flames are controlled by a critical convection velocity in the BFG - oxygen mixing layer. This is quantified from the measurements and matches with the theoretical prediction.Complementary large-scale experiments are performed on a semi-industrial facility, with identical burner geometry, scaled-up to 180 kW using the velocity criterion. The flames show similar structures as obtained at laboratory scale, demonstrating the benefit of preheated oxyfuel combustion for the stabilization of LCV flames. These results validate the analysis of the physical phenomena controlling the limit of stability of BFG oxyfuel flames, as well as the burner design strategy of preheated oxyfuel combustion adapted to low calorific fuels, and the scale-up criteria used for this particular case.
机译:就减少污染物排放和保护不可再生资源方面的燃烧系统对环境的影响的需求迫使人们考虑提高能源效率,并转向工业燃烧炉中的替代燃料。但是,由于它们的发热量(LCV)低于传统天然气(NG),因此其使用可能会成为一个问题。本工作考虑了氧燃料燃烧与燃料和/或氧预热的结合,以通过热回收提高热效率并增强LCV氧燃料的火焰稳定性,而无需使用辅助燃料作为NG。这项研究的重点是高炉煤气(NG)的十分之一的高炉煤气(BFG),该评估从在几个反应温度下主要火焰性质的热化学计算开始。模拟了两种基本火焰配置:用于确定绝热温度,热厚度和层流燃烧速度的完全预混合一维火焰,以及用于确定消光应变速率的逆流扩散火焰。结果表明,由于高炉煤气和氧气的预热,可以大大提高含氧燃料的火焰性能。然后使用三同轴燃烧器在实验室规模(25 kW)上对这种预热的影响进行实验研究,该燃烧器会产生非预混的BFG-O2湍流火焰。燃烧器的几何形状由环形BFG喷射,内部中央氧气喷射和外部环形氧气喷射包围。基于一个临界Damkohler数,描述了带有预热反应物的湍流扩散BFG-O-2火焰的稳定极限的理论分析,并将其用作计算燃烧器尺寸的标准。根据烟气排放和OH *化学发光成像的测量研究了详细的火焰特性。通过这些,对火焰稳定性图作为反应物速度,热功率,氧气分布和预热温度的函数的分析指出了火焰稳定性的局限性以及在不同运行条件下获得的稳定燃烧状态。关于排放,在大多数情况下可实现非常低的污染物排放水平,例如CO和NOx。对结果的进一步分析表明,各种火焰之间的过渡受BFG-氧气混合层中的临界对流速度控制。这是根据测量结果进行量化并与理论预测相匹配的。在大型工业实验中,在具有相同燃烧器几何形状的半工业设备上进行了实验,并使用速度标准将其放大至180 kW。火焰显示出与实验室规模相似的结构,证明了预热的含氧燃料燃烧对稳定LCV火焰的好处。这些结果验证了对控制高炉煤气含氧燃料火焰稳定性极限的物理现象的分析,以及适用于低热量燃料的预热含氧燃料燃烧的燃烧器设计策略的分析,以及用于该特殊情况的放大标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号