首页> 外文期刊>Fuel >Measurement of laminar burning velocities of methane-air mixtures simultaneously at elevated pressures and elevated temperatures
【24h】

Measurement of laminar burning velocities of methane-air mixtures simultaneously at elevated pressures and elevated temperatures

机译:在高压和高温下同时测量甲烷-空气混合物的层流燃烧速度

获取原文
获取原文并翻译 | 示例
           

摘要

Externally heated diverging channel method helps accurate and direct measurement of laminar burning velocities at elevated temperatures. In the present work, this method has been extended to higher pressures to evaluate the combined effect of pressure and temperature on the propagation of premixed methane-air flames. The experimental measurements of methane-air mixtures for different equivalence ratios are reported for a pressure range (1-5 atm), and elevated temperatures of 350-650 K. A non-monotonic behaviour for temperature exponent, alpha is obtained with a minimum value for slightly rich mixtures (phi=1.1). This non-monotonic behaviour of a continues even at higher pressures (2-5 atm) as well. Predictions from three widely used chemical kinetic mechanisms (GRI-Mech 3.0, Aramco 2, FFCM-1) are employed to compare with present experiments. LBV determined using Aramco 2 mechanism matches very well with the present measurements at various elevated pressures and mixture conditions. The variation of pressure exponent, beta follows a bell-shaped curve with maximum value for slightly rich mixtures (phi=1.1) and a peculiar non-linear behaviour for very rich mixtures (phi >= 1.3). Based on the detailed analysis of experimental results, the temperature exponent (alpha) is proposed as a function of pressure, and pressure exponent (beta) as a function of temperature at various equivalence ratios. A modified power-law correlation considering the alpha,beta variations is proposed:S-u = S-u,S-o(T-u/T-u,T-o)(alpha 0+alpha 1(1-Pu/Pu,o))(P-u/P-u,P-o)(beta 0+beta 1(1-Tu/Tu,o)). Analysis of the flame structure at high-pressure conditions indicates that the reaction layer thickness is reduced with an increase in pressure. A decrease in mixture thermal diffusivity with pressure contributes to a reduction in laminar burning velocity at elevated pressures.
机译:外部加热的分流通道方法有助于在高温下准确,直接地测量层流燃烧速度。在目前的工作中,此方法已扩展到更高的压力,以评估压力和温度对甲烷预混合空气火焰传播的综合影响。报告了在压力范围(1-5个大气压)和350-650 K升高的温度下,不同当量比的甲烷-空气混合物的实验测量结果。温度指数的非单调行为,具有最小值对于稍微浓的混合物(phi = 1.1)。即使在更高的压力(2-5 atm)下,a的这种非单调行为也会继续。来自三种广泛使用的化学动力学机制(GRI-Mech 3.0,Aramco 2,FFCM-1)的预测结果与当前实验进行了比较。使用Aramco 2机理测定的LBV与当前在各种高压和混合条件下的测量值非常吻合。压力指数β的变化遵循钟形曲线,对于稍浓的混合物(phi = 1.1)具有最大值,而对于非常浓的混合物(phi> = 1.3)具有特殊的非线性行为。在对实验结果进行详细分析的基础上,提出了在不同当量比下温度指数(α)与压力的函数关系,以及压力指数(β)与温度的关系。提出了一种修正的幂律相关性,考虑了alpha,β的变化:Su = Su,So(Tu / Tu,To)(alpha 0 + alpha 1(1-Pu / Pu,o))(Pu / Pu,Po) (β0 +β1(1-Tu / Tu,o))。在高压条件下对火焰结构的分析表明,反应层的厚度随压力的增加而减小。混合物热扩散系数随压力的降低而导致层流燃烧速度在高压下的降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号