首页> 外文期刊>Fuel >A numerical study on effects of pre-chamber syngas reactivity on hot jet ignition
【24h】

A numerical study on effects of pre-chamber syngas reactivity on hot jet ignition

机译:燃烧室前合成气反应性对热喷射点火影响的数值研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Ignition by a pre-chamber generated hot jet is a promising technology to reduce NOx emissions through extending lean burn limits. However, the role of the pre-chamber fuel reactivity in the main chamber ignition still remains unclear. In the present study, effects of the pre-chamber fuel reactivity on ignition of mixture in a main chamber by the hot jet, which is generated by the combustion of syngas in the pre-chamber, are numerically investigated. In the investigation, different ratios of CO/H-2 of syngas are considered under a thermally-equal condition. CFD simulations are performed using the code based on the KIVA-3V release 2 program coupled with an in-house developed chemical solver. A detailed chemical kinetics mechanism with 15 species and 41 reactions is adopted for the hydrogen and syngas oxidation. The hot jet ignition delay time is characterized by the maximum rate-of-change of the pressure in the main chamber. For the combustion initiation process, three stages are identified: ignition stage (stage I), flame development stage (stage II), and flame propagation stage (stage III). Significant effects of fuel reactivity are only observed on stage I that the ignition delay time considerably increases with increasing CO/H-2 ratio. Further analyses of the local temperature of the hot gas and some important elementary reactions indicate that the low reaction rate of carbon monoxide oxidation (R22: CO + OH = H + CO2) causes incomplete fuel conversion in the orifice due to insufficiently available time for the reactions . The fuel conversion analysis confirms that the small-diameter orifice effect is the main reason for hot jet temperature drops under low pre-chamber syngas reactivity conditions, exhibiting as inhibiting effects on stage I.
机译:预燃室产生的热喷头点火是一项有前途的技术,可通过扩展稀薄燃烧极限来减少NOx排放。然而,尚不清楚前室燃料反应性在主室点火中的作用。在本研究中,通过数值研究了预燃室燃料反应性对通过预燃室中合成气燃烧产生的热射流对主室混合气着火的影响。在研究中,考虑在热均等条件下合成气的CO / H-2比例不同。使用基于KIVA-3V第2版程序的代码以及内部开发的化学求解器进行CFD仿真。氢气和合成气的氧化采用详细的化学动力学机理,该机理具有15种和41个反应。热喷射点火延迟时间的特征在于主腔室内压力的最大变化率。对于燃烧启动过程,确定了三个阶段:点火阶段(阶段I),火焰发展阶段(阶段II)和火焰传播阶段(阶段III)。仅在阶段I上观察到燃料反应性的显着影响,即点火延迟时间随着CO / H-2比的增加而显着增加。进一步分析热气的局部温度和一些重要的基本反应表明,一氧化碳氧化的低反应速率(R22:CO + OH = H + CO2)会由于节气门的可用时间不足而导致孔中的燃料转化不完全。反应。燃料转化分析证实,小口径节流效应是在低预燃室合成气反应性条件下热射流温度下降的主要原因,表现为对阶段I的抑制作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号