首页> 外文期刊>Frontiers of physics >Enhanced robustness of zero-line modes in graphene via magnetic field
【24h】

Enhanced robustness of zero-line modes in graphene via magnetic field

机译:磁场增强石墨烯零线模式的鲁棒性

获取原文
获取原文并翻译 | 示例
           

摘要

We systematically studied the influence of magnetic field on zero-line modes (ZLMs) in graphene and demonstrated the physical origin of their enhanced robustness by employing nonequilibrium Green's functions and the Landauer-Buttiker formula. We found that a perpendicular magnetic field can separate the wavefunctions of the counter-propagating kink states into opposite directions. Specifically, the separation vanishes at the charge neutrality point and increases as the Fermi level deviates from the charge neutrality point and can reach a magnitude comparable to the wavefunction spread at a moderate field strength. Such spatial separation of oppositely propagating ZLMs effectively suppresses backscattering and is more significant under zigzag boundary condition than under armchair boundary condition. Moreover, the presence of magnetic field enlarges the bulk gap and suppresses the bound states, thereby further reducing the scattering. These mechanisms effectively increase the mean free paths of the ZLMs to approximately 1 mu m in the presence of a disorder.
机译:我们系统地研究了磁场对石墨烯中零线模式(ZLM)的影响,并通过采用非平衡格林函数和Landauer-Buttiker公式证明了其增强鲁棒性的物理原因。我们发现垂直磁场可以将反向传播的扭结状态的波函数分成相反的方向。具体地,在费米能级偏离电荷中性点时,该间隔在电荷中性点处消失并且增大,并且可以达到与在中等场强下传播的波函数相当的幅度。反向传播的ZLM的这种空间分离有效地抑制了反向散射,并且在之字形边界条件下比在扶手椅状边界条件下更为重要。此外,磁场的存在扩大了整体间隙并抑制了结合状态,从而进一步减小了散射。这些机制在存在障碍的情况下有效地将ZLM的平均自由程增加到大约1微米。

著录项

  • 来源
    《Frontiers of physics》 |2019年第2期|23501.1-23501.6|共6页
  • 作者单位

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, ICQD, Hefei 230026, Anhui, Peoples R China|Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China|Univ Sci & Technol China, CAS Key Lab Strongly Coupled Quantum Matter Phys, Hefei 230026, Anhui, Peoples R China|Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, ICQD, Hefei 230026, Anhui, Peoples R China|Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China|Univ Sci & Technol China, CAS Key Lab Strongly Coupled Quantum Matter Phys, Hefei 230026, Anhui, Peoples R China|Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, ICQD, Hefei 230026, Anhui, Peoples R China|Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China|Univ Sci & Technol China, CAS Key Lab Strongly Coupled Quantum Matter Phys, Hefei 230026, Anhui, Peoples R China|Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, ICQD, Hefei 230026, Anhui, Peoples R China|Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China|Univ Sci & Technol China, CAS Key Lab Strongly Coupled Quantum Matter Phys, Hefei 230026, Anhui, Peoples R China|Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    graphene; topological state; zero-line state; electronic transport;

    机译:石墨烯拓扑状态零线状态电子传输;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号